• Title/Summary/Keyword: heterologous protein

Search Result 201, Processing Time 0.023 seconds

Production of Biopharmaceuticals in E. coli: Current Scenario and Future Perspectives

  • Baeshen, Mohammed N.;Al-Hejin, Ahmed M.;Bora, Roop S.;Ahmed, Mohamed M. M.;Ramadan, Hassan A. I.;Saini, Kulvinder S.;Baeshen, Nabih A.;Redwan, Elrashdy M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.953-962
    • /
    • 2015
  • Escherichia coli is the most preferred microorganism to express heterologous proteins for therapeutic use, as around 30% of the approved therapeutic proteins are currently being produced using it as a host. Owing to its rapid growth, high yield of the product, costeffectiveness, and easy scale-up process, E. coli is an expression host of choice in the biotechnology industry for large-scale production of proteins, particularly non-glycosylated proteins, for therapeutic use. The availability of various E. coli expression vectors and strains, relatively easy protein folding mechanisms, and bioprocess technologies, makes it very attractive for industrial applications. However, the codon usage in E. coli and the absence of post-translational modifications, such as glycosylation, phosphorylation, and proteolytic processing, limit its use for the production of slightly complex recombinant biopharmaceuticals. Several new technological advancements in the E. coli expression system to meet the biotechnology industry requirements have been made, such as novel engineered strains, genetically modifying E. coli to possess capability to glycosylate heterologous proteins and express complex proteins, including full-length glycosylated antibodies. This review summarizes the recent advancements that may further expand the use of the E. coli expression system to produce more complex and also glycosylated proteins for therapeutic use in the future.

Heterologous Expression of Streptomyces albus Genes Linked to an Integrating Element and Activation of Antibiotic Production

  • Kwon, Hyung-Jin;Lee, Soon-Youl;Hong, Soon-Kwang;Park, Uhn-Mee;Suh, Joo-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.4
    • /
    • pp.488-497
    • /
    • 1999
  • Probing Streptomyces albus ATCC 21838 chromosomal DNA with a proline tRNA sequence resulted in an isolation of a putative integrating element in the 6.4-kb EcoRI fragment. It was found that Streptomyces lividans TK-24 transformed with a cloned DNA fragment on a multicopy plasmid, produced a higher level of spore pigment and mycelial red pigment on a regeneration agar. Furthermore, the transformant S. lividans TK-24 produced a markedly increased level of undecylprodigiosin in a broth culture. A nucleotide sequence analysis of the cloned region revealed several open reading frames homologous to the integrases of integrating plasmids or temperate bacteriophages, signal-transducing regulatory proteins with a conserved ATP-binding domain, oxidoreductases ($\beta$-ketoacyl reductase), and an AraC-like transcriptional regulator. To examine the effect on antibiotic production, each coding region was overexpressed separately from the other genes in the region in S. lividans TK-24 with; pJHS3044 for the expression of the signal-transducing regulatory protein homologue, pJHS3045 for the homologue of oxidoreductase, and pJHS3051 for the homologue of the AraC-like transcriptional regulator. Phenotypic studies of S. lividans TK-24 strains harboring plasmids for the overexpression of individual genes suggested the following effects of the genes on antibiotic production: The oxidoreductase homologue stimulated the production of actinorhodin and undecylprodigiosin, which was influenced by the culture conditions; the homologue of the AraC-like transcriptional regulator was the most effective factor in antibiotic production within all the culture conditions tested; the signal-transducing regulatory protein homologue repressed the effect due to the homologue of the AraC-like transcriptional regulator, however, the antibiotic production was derepressed upon entering the stationary phase.

  • PDF

Inhibition of Yeast Growth by Broadly Cross-Reactive Antisera Elicited by Heterologous Mannan-Protein Conjugate

  • Machova, Eva;Korcova, Jana;Cizova, Alzbeta;Bystricky, Slavomir
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1177-1179
    • /
    • 2015
  • A new approach to obtain broadly cross-reactive antisera against important yeast pathogens by intensive hyperimmunization with polysaccharide-protein conjugates is described here. Surface mannan of Candida albicans and capsular galactoglucoxylomannan of Cryptococcus laurentii were isolated and chemically linked to human serum albumin. Antisera elicited by a 7-week vigorous immunization of rabbits with the conjugates showed effective cross-reactive growth inhibition of different representatives of Candida spp. as well as Cryptococcus spp. IgG antibodies are evidenced as the effective component of the antisera.

Bacillus subtilis Spore Surface Display Technology: A Review of Its Development and Applications

  • Zhang, Guoyan;An, Yingfeng;Zabed, Hossain M.;Guo, Qi;Yang, Miaomiao;Yuan, Jiao;Li, Wen;Sun, Wenjin;Qi, Xianghui
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.179-190
    • /
    • 2019
  • Bacillus subtilis spore surface display (BSSD) technology is considered to be one of the most promising approaches for expressing heterologous proteins with high activity and stability. Currently, this technology is used for various purposes, such as the production of enzymes, oral vaccines, drugs and multimeric proteins, and the control of environmental pollution. This paper presents an overview of the latest developments in BSSD technology and its application in protein engineering. Finally, the major limitations of this technology and future directions for its research are discussed.

Performance of Homologous and Heterologous Prime-Boost Immunization Regimens of Recombinant Adenovirus and Modified Vaccinia Virus Ankara Expressing an Ag85B-TB10.4 Fusion Protein against Mycobacterium tuberculosis

  • Kou, Yiming;Wan, Mingming;Shi, Wei;Liu, Jie;Zhao, Zhilei;Xu, Yongqing;Wei, Wei;Sun, Bo;Gao, Feng;Cai, Linjun;Jiang, Chunlai
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.1022-1029
    • /
    • 2018
  • Tuberculosis (TB) remains a serious health issue around the word. Adenovirus (Ad)-based vaccine and modified vaccinia virus Ankara (MVA)-based vaccine have emerged as two of the most promising immunization candidates over the past few years. However, the performance of the homologous and heterologous prime-boost immunization regimens of these two viral vector-based vaccines remains unclear. In the present study, we constructed recombinant Ad and MVA expressing an Ag85B-TB10.4 fusion protein (AdH4 and MVAH4) and evaluated the impact of their different immunization regimens on the humoral and cellular immune responses. We found that the viral vector-based vaccines could generate significantly higher levels of antigen-specific antibodies, $IFN-{\gamma}$-producing splenocytes, $CD69^+CD8^+$ T cells, and $IFN-{\gamma}$ secretion when compared with bacillus Calmette-$Gu{\acute{e}}rin$ (BCG) in a mouse model. AdH4-containing immunization regimens (AdH4-AdH4, AdH4-MVAH4, and MVAH4-AdH4) induced significantly stronger antibody responses, much more $IFN-{\gamma}$-producing splenocytes and $CD69^+CD8^+$ T cells, and higher levels of $IFN-{\gamma}$ secretion when compared with the MVAH4-MVAH4 immunization regimen. The number of $IFN-{\gamma}$-producing splenocytes sensitive to $CD8^+$ T-cell restricted peptides of Ag85B (9-1p and 9-2p) and Th1-related cytokines ($IFN-{\gamma}$ and $TNF-{\alpha}$) in the AdH4-MVAH4 heterologous prime-boost regimen immunization group was significantly higher than that in the other viral vector-based vaccine- and BCG-immunized groups, respectively. These results indicate that an immunization regimen involving AdH4 may have a higher capacity to induce humoral and cellular immune responses against TB in mice than that by regimens containing BCG or MVAH4 alone, and the AdH4-MVAH4 prime-boost regimen may generate an ideal protective effect.

Effect of a Bombyx mori Protein Disulfide Isomerase on Production of Recombinant Antibacterial Peptides

  • Goo, Tae-Won;Kim, Seong-Wan;Choi, Kwang-Ho;Kim, Seong-Ryul;Kang, Seok-Woo;Park, Seung-Won;Yun, Eun-Young
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.26 no.2
    • /
    • pp.119-123
    • /
    • 2013
  • The insect baculovirus expression vector system (BEVS) is useful for producing biologically active recombinant proteins. However, the overexpression of heterologous proteins using this system often results in misfolded proteins and the formation of protein aggregates. To overcome this limitation, we developed a versatile baculovirus expression and secretion system using Bombyx mori protein disulfide isomerase (bPDI) as a fusion partner. bPDI gene fusion was found to improve the secretions and antibacterial activities of recombinant nuecin and enbocin proteins. Thus, we conclude that bPDI gene fusion is a useful addition to BEVS for the large-scale production of bioactive recombinant proteins.

Expression in Escherichia coli of a Putative Human Acetohydroxyacid Synthase

  • Duggleby, Ronald G.;Kartikasari, Apriliana E.R.;Wunsch, Rebecca M.;Lee, Yu-Ting;Kil, Mee-Wha;Shin, Ju-Young;Chang, Soo-Ik
    • BMB Reports
    • /
    • v.33 no.3
    • /
    • pp.195-201
    • /
    • 2000
  • A human gene has been reported that may encode the enzyme acetohydroxyacid synthase. Previously this enzyme was thought to be absent from animals although it is present in plants and many microorganisms. In plants, this enzyme is the target of a number of commercial herbicides and the use of these compounds may need to be reassessed if the human enzyme exists and proves to be susceptible to inhibition. Here we report the construction of several plasmid vectors containing the cDNA sequence for this protein, and their expression in Escherichia coli. High levels of expression were observed, but most of the protein proved to be insoluble. The small amounts of soluble protein contained little or no acetohydroxyacid synthase activity. Attempts to refold the insoluble protein were successful insofar as the protein became soluble. However, the refolded protein did not gain any acetohydroxyacid synthase activity. In vivo complementation tests of an E. coli mutant produced no evidence that the protein is active. Incorrect folding, or the lack of another subunit, may explain the data but we favor the interpretation that this gene does not encode an acetohydroxyacid synthase.

  • PDF

High Level Production of human Protein Tyrosine Kinase-6 in Insect Cells Using Drosophila Peptidoglycan Recognition Protein-LB as a fusion protein (곤충세포에서 새로운 퓨전 단백질인 초파리 유래 PGRP-LB를 이용한 인간 PTK6의 과발현 및 생산)

  • Kim, Seul-Ki;Kim, Han-Ie;Woo, Jae-Sung;Cho, Hyun-Soo;Jung, Yun-Jin;Lee, Seung-Taek;Ha, Nam-Chul
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.179-184
    • /
    • 2007
  • PTK6, an intracellular protein tyrosine kinase, is significantly overexpressed in a majority of breast cancers and has a role in promoting the proliferation of the cancer cells, but not of normal cells. Here, we report high-level production of the catalytic unit of PTK6 fused with Drosophila peptidoglycan recognition protein (PGRT)-LB, in the baculovirus system. We first found that the PGRP-LB was potentially useful as a fusion partner to increase the yield of heterologous protein in the baculovirus system. The purified recombinant protein exhibited a 1.5-fold activity with much higher yield than the bacterially-expressed protein. The protein expressed in the baculovirus system will be useful for the crystallization to determine its crystal structure helping understand the molecular mechanism of PTK6 and design its inhibitors.

A study on the effect of CspA expression on the productivity of recombinant protein at low temperature (CspA의 발현이 저온에서의 재조합 단백질 생산성에 미치는 영향에 관한 연구)

  • Kim, Su-Hyun;Heo, Mi-Ae;Lee, Sun-Gu
    • KSBB Journal
    • /
    • v.24 no.1
    • /
    • pp.96-100
    • /
    • 2009
  • One of the major drawbacks associated with the high-level expression of the recombinant proteins in Escherichia coli is the formation of insoluble inclusion bodies in the cytoplasm. Production of recombinant protein at reduced temperature has proven effective in improving the solubility of a number of structurally and functionally unrelated proteins, but a major limitation of using low temperatures for recombinant protein production in E. coli is the reduced rate of synthesis of the heterologous protein caused by the significant reduction of cell growth rate. Here we investigated the effect of co-expression of CspA, a cold-shock protein known to be RNA chaperone at low temperature, on the productivity of recombinant protein at various temperatures by using green fluorescence protein (GFP) as a model recombinant protein. We could observe that the co-expression of CspA enhanced the productivity of GFP at $15^{\circ}C$ by accelerating the growth of E. coli at the temperature. On the other hand, the CspA coexpression didn't affect the cell growth rate as well as the specific GFP production rate at other tested temperatures, $20^{\circ}C$, $25^{\circ}C$, and $37^{\circ}C$.

Impeller Types and Feeding Modes Influence the Morphology and Protein Expression in the Submerged Culture of Aspergillus oryzae

  • Heo, Joo-Hyung;Vladimir Ananin;Park, Jeong-Seok;Lee, Chung-Ryul;Moon, Jun-Ok;Ohsuk Kwon;Kang, Hyun-Ah;Kim, Chul-Ho;Rhee, Sang-Ki
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.3
    • /
    • pp.184-190
    • /
    • 2004
  • The influences of impeller types on morphology and protein expression were investigated in a submerged culture of Aspergillus oryzae. The impeller types strongly affected mycelial morphology and protein production in batch and fed-batch fermentations. Cells that were cultured by propeller agitation grew in the form of a pellet, whereas cells that were cultured by turbine agitation grew in a freely dispersed-hyphal manner and in a clumped form. Pellet-grown cells showed high levels of protein production for both the intracellularly heterologous protein (${\beta}$-glucuronidase) and the extracellularly homologous protein (${\alpha}$-amylase). The feeding mode of the carbon source also influenced the morphological distribution and protein expression in fed-batch fermentation of A. oryzae. Pulsed-feeding mainly showed high protein expression and homogeneous distribution of pellet whereas continuous feeding resulted in less protein expression and heterogeneous distribution with pellet and dispersed-hyphae. The pellet growth with propeller agitation paralleling with the pulsed-feeding of carbon source showed a high level of protein production in the submerged fed-batch fermentation of recombinant A. oryzae.