• 제목/요약/키워드: heterologous protein

검색결과 201건 처리시간 0.022초

Production of Coenzyme $Q_{10}$ by Recombinant E. coli Harboring the Decaprenyl Diphosphate Synthase Gene from Sinorhizobium meliloti

  • Seo Myung-Ji;Im Eun-Mi;Hur Jin-Haeng;Nam Jung-Yeon;Hyun Chang-Gu;Pyun Yu-Ryang;Kim Soon-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권6호
    • /
    • pp.933-938
    • /
    • 2006
  • Decaprenyl diphosphate synthase (DPS) is the key enzyme for the production of coenzyme $Q_{10}$ ($CoQ_{10}$). A dps gene from Sinorhizobium meliioti KCCM 11232 (IFO 14782) was isolated by PCR and then cloned in Escherichia coli. DNA sequencing analysis revealed an open reading frame of 1,017 bp encoding a 338-amino-acid protein. The protein was identical at the 98% level to the putative octaprenyl diphosphate synthase (IspB) of S. meliloti 1021. The deduced amino acid sequence included the DDxxD domains conserved in the majority of the prenyl diphosphate synthases. Heterologous expression in E. coli BL21 (DE3) was carried out, and the $CoQ_{10}$ produced was then analyzed by HPLC. E. coli BL21 (DE3) harboring the dps gene from S. melioti produced CoQ$_{10}$ in addition to endogenous coenzyme Q$_8$ (CoQ$_8$), whereas wild-type E. coli BL21 (DE3) host did not have the ability of producing CoQ$_{10}$. The results suggest that the putative dps from S. meliloti KCTC 2353 encoded the DPS.

Characterization of a 27 kDa Fibrinolytic Enzyme from Bacillus amyloliquefaciens CH51 Isolated from Cheonggukjang

  • Kim, Gyoung-Min;Lee, Ae-Ran;Lee, Kang-Wook;Park, Ae-Yong;Chun, Ji-Yeon;Cha, Jae-Ho;Song, Young-Sun;Kim, Jeong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권9호
    • /
    • pp.997-1004
    • /
    • 2009
  • Bacillus amyloliquefancies CH51 isolated from cheonggukjang, a traditional Korean fermented soy food, has strong fibrinolytic activity and produces several fibrinolytic enzymes. Among four different growth media, tryptic soy broth was the best in terms of supporting cell growth and fibrinolytic activity of this strain. A protein with fibrinolytic activity was partially purified from the culture supernatant by CM-Sephadex and Phenyl Sepharose column chromatographies. Tandem mass spectrometric analysis showed that this protein is a homolog of AprE from B. subtilis and it was accordingly named AprE51. The optimum pH and temperature for partially purified AprE51 activity were 6.0 and $45^{\circ}C$, respectively. A gene encoding AprE51, aprE51, was cloned from B. amyloliquefaciens CH51 genomic DNA. The aprE51 gene was overexpressed in heterologous B. subtilis strains deficient in fibrinolytic activity using an E. coli-Bacillus shuttle vector, pHY300PLK.

Improvement of a Sulfolobus-E. coli Shuttle Vector for Heterologous Gene Expression in Sulfolobus acidocaldarius

  • Hwang, Sungmin;Choi, Kyoung-Hwa;Yoon, Naeun;Cha, Jaeho
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권2호
    • /
    • pp.196-205
    • /
    • 2015
  • A Sulfolobus-E. coli shuttle vector for an efficient expression of the target gene in S. acidocaldarius strain was constructed. The plasmid-based vector pSM21 and its derivative pSM21N were generated based on the pUC18 and Sulfolobus cryptic plasmid pRN1. They carried the S. solfataricus P2 pyrEF gene for the selection marker, a multiple cloning site (MCS) with C-terminal histidine tag, and a constitutive promoter of the S. acidocaldarius gdhA gene for strong expression of the target gene, as well as the pBR322 origin and ampicillin-resistant gene for E. coli propagation. The advantage of pSM21 over other Sulfolobus shuttle vectors is that it contains a MCS and a histidine tag for the simple and easy cloning of a target gene as well as one-step purification by histidine affinity chromatography. For successful expression of the foreign genes, two genes from archaeal origins (PH0193 and Ta0298) were cloned into pSM21N and the functional expression was examined by enzyme activity assay. The recombinant PH0193 was successfully expressed under the control of the gdhA promoter and purified from the cultures by His-tag affinity chromatography. The yield was approximately 1 mg of protein per liter of cultures. The enzyme activity measurements of PH0913 and Ta0298 revealed that both proteins were expressed as an active form in S. acidocaldarius. These results indicate that the pSM21N shuttle vector can be used for the functional expression of foreign archaeal genes that form insoluble aggregates in the E. coli system.

Interaction Between Acid-Labile Subunit and Insulin-like Growth Factor Binding Protein 3 Expressed in Xenopus oocytes

  • Park, Kyung-Yi;Lee, Dong-Hee
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2001년도 추계학술대회 및 정기총회
    • /
    • pp.99-99
    • /
    • 2001
  • The acid-labile subunit (ALS) associates with insulin-like growth factor (IGF)-I or -II and IGF binding protein-3 (IGFBP-3) to form a 150-kD complex in the circulation. This complex is thought to regulate the serum IGFs by restricting them in the vascular system and promotes their endocrine actions. Little is known about how ALS binds to IGFBP3, which connects the IGFs to ALS. Xenopus oocyte was utilized to study the function of ALS in assembling IGFs into the ternary complexes. Xenopus oocyte was shown to correctly translate in vitro transcribed mRNAs of ALS and IGFBP3. IGFBP3 and ALS mRNAs were injected in mixture and their products were immunoprecipitated by antisera against ALS and IGFBP3. Contrary to the traditional reports that ALS interacts only with IGF-bound IGFBP3, this study shows that ALS is capable of forming a binary complex with IGFBP3 in the absence of IGF. When cross-linked by disuccinimidyl substrate, band representing ALS-IGFBP3 complex was evident on the PAGE. IGFBP3 movement was monitored according to the distribution between the hemispheres. Following a localized translation in the vegetal hemisphere, IGFBP3 was shown to remain in the vegetal half in the presence of ALS. Different from wild type IGFBP3, however, mutant IGFBP3 freely diffused into the animal half despite the presence of ALS. Taken together, this study suggests that ALS may play an important role in sequestering IGFBP3 polypeptides via the intermolecular aggregation. Studies using this heterologous model will lead to a better understanding of the IGFBP3 and ALS assembling into the ternary structure and circulating IGF system.

  • PDF

Cloning and Expression in Pichia pastoris of a New Cytochrome P450 Gene from a Dandruff-causing Malassezia globosa

  • Lee, Eun-Chang;Ohk, Seul-Ong;Suh, Bo-Young;Park, Na-Hee;Kim, Beom-Joon;Kim, Dong-Hak;Chun, Young-Jin
    • Toxicological Research
    • /
    • 제26권1호
    • /
    • pp.47-52
    • /
    • 2010
  • The Malassezia fungi are responsible for various human skin disorders including dandruff and seborrheic dermatitis. Of the Malassezia fungi, Malassezia globosa (M. globosa) is one of the most common in human scalp. The completed genome sequence of M. globosa contains four putative cytochrome P450 genes. To determine the roles of Malassezia P450 enzymes in the biosynthesis of ergosterol, we isolated MGL3996 gene from M. globosa chromosomal DNA by PCR. The MGL3996 gene encodes an enzyme of 616 amino acids, which shows strong similarity with known CYP52s of other species. MGL3996 gene was cloned and expressed in Pichia pastoris (P. pastoris) heterologous yeast expression system. Using the yeast microsomes expressing MGL3996 protein, a typical P450 CO-difference spectrum was shown with absorption maximum at 448 nm. SDS-PAGE analysis revealed a protein band of apparent molecular weight 69 kDa and Western blot with anti-histidine tag antibody showed that MGL3996 was successfully expressed in P. pastoris. Cloning and expression of a new P450 gene is an important step to study the P450 monooxygenase system of M. globosa and to understand the role of P450 enzymes in pathophysiology of dandruff.

Molecular Cloning and Characterization of a New C-type Lysozyme Gene from Yak Mammary Tissue

  • Jiang, Ming Feng;Hu, Ming Jun;Ren, Hong Hui;Wang, Li
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권12호
    • /
    • pp.1774-1783
    • /
    • 2015
  • Milk lysozyme is the ubiquitous enzyme in milk of mammals. In this study, the cDNA sequence of a new chicken-type (c-type) milk lysozyme gene (YML), was cloned from yak mammary gland tissue. A 444 bp open reading frames, which encodes 148 amino acids (16.54 kDa) with a signal peptide of 18 amino acids, was sequenced. Further analysis indicated that the nucleic acid and amino acid sequences identities between yak and cow milk lysozyme were 89.04% and 80.41%, respectively. Recombinant yak milk lysozyme (rYML) was produced by Escherichia coli BL21 and Pichia pastoris X33. The highest lysozyme activity was detected for heterologous protein rYML5 (M = 1,864.24 U/mg, SD = 25.75) which was expressed in P. pastoris with expression vector $pPICZ{\alpha}A$ and it clearly inhibited growth of Staphylococcus aureus. Result of the YML gene expression using quantitative polymerase chain reaction showed that the YML gene was up-regulated to maximum at 30 day postpartum, that is, comparatively high YML can be found in initial milk production. The phylogenetic tree indicated that the amino acid sequence was similar to cow kidney lysozyme, which implied that the YML may have diverged from a different ancestor gene such as cow mammary glands. In our study, we suggest that YML be a new c-type lysozyme expressed in yak mammary glands that plays a role as host immunity.

파스튜렐라(A : 3) 균주의 재조합 외막단백질 H에 의한 가금 콜레라 감염 생쥐의 면역성 검정 (Protective immunity induced by recombinant outer membrane protein H of pasteurella multocida (A:3) of fowl cholera in mice)

  • 김영환;양주성;권무식
    • 대한수의학회지
    • /
    • 제46권2호
    • /
    • pp.127-133
    • /
    • 2006
  • Pasteurella multocida is a terrible veterinary pathogen that causes widespread infections in husbandry. To induce homologous and/or heterologous immunity against the infections, outer membrane protein Hs (OmpH) in the envelope of different strains of P. multocida are thought to be attractive vaccine candidates. Previously we cloned and characterized a gene for OmpH from pathogenic P. multocida (A : 3) (In Press, Korean J. Microbiol. Biotechnol. 2005, 33, December). The gene is composed of 1,047 nucleotides (nt) coding 348 amino acids (aa) with signal peptide of 20 aa. The truncated ompH, a gene without nt coding for the signal peptide, was generated using pRSET A to name "pRSET A/OmpH-F2". This truncated ompH was well expressed in Escherichia coli BL21 (DE3). Truncated OmpH was purified for induction of immunity against live pathogen of fowl cholera (P. multocida A : 3) in mice. Some $50{\mu}g$ of the purified polypeptide was intraperitoneally injected into mice two times with 10 day interval. Lethal dose ($25{\mu}l$) of live P. multocida A : 3 was determined by directly injecting the pathogen into wild mice (n = 25). To demonstrate the vaccine candidate of the truncated OmpH, the live pathogen ($25{\mu}l$) was challenged with the OmpH-immunized mouse group as well as positive & negative controls (n = 80). The results show that the truncated OmpH can be used for an effective vaccine production to prevent fowl cholera caused by pathogenic P. multocida (A : 3).

Characterization of a Soil Metagenome-Derived Gene Encoding Wax Ester Synthase

  • Kim, Nam Hee;Park, Ji-Hye;Chung, Eunsook;So, Hyun-Ah;Lee, Myung Hwan;Kim, Jin-Cheol;Hwang, Eul Chul;Lee, Seon-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권2호
    • /
    • pp.248-254
    • /
    • 2016
  • A soil metagenome contains the genomes of all microbes included in a soil sample, including those that cannot be cultured. In this study, soil metagenome libraries were searched for microbial genes exhibiting lipolytic activity and those involved in potential lipid metabolism that could yield valuable products in microorganisms. One of the subclones derived from the original fosmid clone, pELP120, was selected for further analysis. A subclone spanning a 3.3 kb DNA fragment was found to encode for lipase/esterase and contained an additional partial open reading frame encoding a wax ester synthase (WES) motif. Consequently, both pELP120 and the full length of the gene potentially encoding WES were sequenced. To determine if the wes gene encoded a functioning WES protein that produced wax esters, gas chromatography-mass spectroscopy was conducted using ethyl acetate extract from an Escherichia coli strain that expressed the wes gene and was grown with hexadecanol. The ethyl acetate extract from this E. coli strain did indeed produce wax ester compounds of various carbon-chain lengths. DNA sequence analysis of the full-length gene revealed that the gene cluster may be derived from a member of Proteobacteria, whereas the clone does not contain any clear phylogenetic markers. These results suggest that the wes gene discovered in this study encodes a functional protein in E. coli and produces wax esters through a heterologous expression system.

Effects of Pentoses on 2-deoxy-D-Glucose Transport of the Endogenous Sugar Transport Systems in Spodoptera frugiperda Clone 9 Cells

  • 이종기
    • 대한의생명과학회지
    • /
    • 제15권1호
    • /
    • pp.55-60
    • /
    • 2009
  • Insect cells such as Spodoptera frugiperda Clone 9 (Sf9) cells are widely chosen as the host for heterologous expression of a mammalian sugar transport protein using the baculovirus expression system. Characterization of the expressed protein is expected to include assay of its function, including its ability to transport sugars and to bind inhibitory ligands such as cytochalasin B. It is therefore very important first to establish the transport characteristics and other properties of the endogenous sugar transport proteins of the host insect cells. However, very little is known of the transport characteristics of Sf9 cells, although their ability to grow on TC-100 medium strongly suggested the presence of endogenous glucose transport system. In order to investigate the substrate and inhibitor recognition properties of the Sf9 cell transporter, the ability of pentoses to inhibit 2-deoxy-D-glucose (2dGlc) transport was investigated by measuring inhibition constants $(K_i)$. To determine the time period over which of sugar into the Sf cells was linear, the uptake of 2dGlc 0.1mM extracellular concentration was measured over periods ranging from 30 seconds to 30 minutes. The uptake was linear for at least 2 minutes at the concentration, implying that uptake made over a 1 minute time course would reflect initial rates of the sugar uptake. The data have also revealed the existence of a saturable transport system for pentose uptake by the insect cells. The transport was inhibited by D-xylose and D-ribose, although not as effective as hexoses. However, L-xylose had a little effect on 2dGlc transport in the Sf9 cells, indicating that the transport is stereoselective. Unlike the human erythrocyte-type glucose transport system, D-ribose had a somewhat greater apparent affinity for the Sf9 cell transporter than D-xylose. It is therefore concluded that Sf9 cells contain an endogenous sugar transport activity that in some aspects resembled the human erythrocyte-type counterpart, although the Sf9 and human transport systems do differ in their affinity for cytochalasin B.

  • PDF

Overexpression of ginseng UGT72AL1 causes organ fusion in the axillary leaf branch of Arabidopsis

  • Nguyen, Ngoc Quy;Lee, Ok Ran
    • Journal of Ginseng Research
    • /
    • 제41권3호
    • /
    • pp.419-427
    • /
    • 2017
  • Background: Glycosylation of natural compounds increases the diversity of secondary metabolites. Glycosylation steps are implicated not only in plant growth and development, but also in plant defense responses. Although the activities of uridine-dependent glycosyltransferases (UGTs) have long been recognized, and genes encoding them in several higher plants have been identified, the specific functions of UGTs in planta remain largely unknown. Methods: Spatial and temporal patterns of gene expression were analyzed by quantitative reverse transcription (qRT)-polymerase chain reaction (PCR) and GUS histochemical assay. In planta transformation in heterologous Arabidopsis was generated by floral dipping using Agrobacterium tumefaciens (C58C1). Protein localization was analyzed by confocal microscopy via fluorescent protein tagging. Results: PgUGT72AL1 was highly expressed in the rhizome, upper root, and youngest leaf compared with the other organs. GUS staining of the promoter: GUS fusion revealed high expression in different organs, including axillary leaf branch. Overexpression of PgUGT72AL1 resulted in a fused organ in the axillary leaf branch. Conclusion: PgUGT72AL1, which is phylogenetically close to PgUGT71A27, is involved in the production of ginsenoside compound K. Considering that compound K is not reported in raw ginseng material, further characterization of this gene may shed light on the biological function of ginsenosides in ginseng plant growth and development. The organ fusion phenotype could be caused by the defective growth of cells in the boundary region, commonly regulated by phytohormones such as auxins or brassinosteroids, and requires further analysis.