• 제목/요약/키워드: heterogeneous wireless access

Search Result 115, Processing Time 0.189 seconds

A Heterogeneous-carrier Selectable Routing Scheme Based on Normalized Location and Transmission Characteristics (MCS-NLTC) for Multi-carrier MANETs at Sea (다중매체로 이루어진 해상 자율망에서 이종 매체 선택이 가능하고 정규화된 위치와 전송특성에 의한 라우팅)

  • Son, Joo-Young
    • Journal of Navigation and Port Research
    • /
    • v.38 no.4
    • /
    • pp.343-348
    • /
    • 2014
  • A routing scheme called MCS-NLTC using a self-configuration marine network model and the diversity and heterogeneity of broadband wireless access technologies is newly proposed. The MCS-NLTC algorithm selects optimal nodes and carriers for every hop in optimal routes based on not conventional hop counts but normalized distances to destination ships (location information of destination ships). Normalized transmission characteristics of applications and carriers are considered to get optimal routes as well. The location information enhances convergence speed to get destinations, which makes the route search time faster. Evaluated performances are compared with those of the schemes based on max-win (OMH-MW), and normalized transmission characteristics (MCS-NTC).

Design of an In-vehicle Intelligent Information System for Remote Management (차량 원격 진단 및 관리를 위한 차량 지능 정보시스템의 설계)

  • Kim, Tae-Hwan;Lee, Seung-Il;Lee, Yong-Doo;Hong, Won-Kee
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1023-1026
    • /
    • 2005
  • In the ubiquitous computing environment, an intelligent vehicle is defined as a sensor node with a capability of intelligence and communication in a wire and wireless network space. To make it real, a lot of problems should be addressed in the aspect of vehicle mobility, in-vehicle communication, common service platform and the connection of heterogeneous networks to provide a driver with several intelligent information services beyond the time and space. In this paper, we present an intelligent information system for managing in-vehicle sensor network and a vehicle gateway for connecting the external networks. The in-vehicle sensor network connected with several sensor nodes is used to collect sensor data and control the vehicle based on CAN protocol. Each sensor node is equipped with a reusable modular node architecture, which contains a common CAN stack, a message manager and an event handler. The vehicle gateway makes vehicle control and diagnosis from a remote host possible by connecting the in-vehicle sensor network with an external network. Specifically, it gives an access to the external mobile communication network such as CDMA. Some experiments was made to find out how long it takes to communicate between a vehicle's intelligent information system and an external server in the various environment. The results show that the average response time amounts to 776ms at fixed place, 707ms at rural area and 910ms at urban area.

  • PDF

A Mobile P2P Message Platform Enabling the Energy-Efficient Handover between Heterogeneous Networks (이종 네트워크 간 에너지 효율적인 핸드오버를 지원하는 모바일 P2P 메시지 플랫폼)

  • Kim, Tae-Yong;Kang, Kyung-Ran;Cho, Young-Jong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.10
    • /
    • pp.724-739
    • /
    • 2009
  • This paper suggests the energy-efficient message delivery scheme and the software platform which exploits the multiple network interfaces of the mobile terminals and GPS in the current mobile devices. The mobile terminals determine the delivery method among 'direct', 'indirect', and 'WAN' based on the position information of itself and other terminals. 'Direct' method sends a message directly to the target terminal using local RAT. 'Indirect' method extends the service area by exploiting intermediate terminals as relay node. If the target terminal is too far to reach through 'direct' or 'indirect' method, the message is sent using wireless WAN technology. Our proposed scheme exploits the position information and, thus, power consumption is drastically reduced in determining handover time and direction. Network simulation results show that our proposed delivery scheme improves the message transfer efficiency and the handover detection latency. We implemented a message platform in a smart phone realizing the proposed delivery scheme. We compared our platform with other typical message platforms from energy efficiency aspect by observing the real power consumption and applying the mathematical modeling. The comparison results show that our platform requires significantly less power.

Design and Analysis of Multiple Mobile Router Architecture for In-Vehicle IPv6 Networks (차량 내 IPv6 네트워크를 위한 다중 이동 라우터 구조의 설계와 분석)

  • Paik Eun-Kyoung;Cho Ho-Sik;Choi Yang-Hee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.2 no.2 s.3
    • /
    • pp.43-54
    • /
    • 2003
  • As the demand for ubiquitous mobile wireless Internet grows, vehicles are receiving a lot of attention as new networking platforms. The demand for 4G all-IP networks encourages vehicle networks to be connected using IPv6. By means of network mobility (NEMO) support, we can connect sensors, controllers, local ,servers as well as passengers' devices of a vehicle to the Internet through a mobile router. The mobile router provides the connectivity to the Internet and mobility transparency for the rest of the mobile nodes of an in-vehicle nv6 network. So, it is .important for the mobile router to assure reliable connection and a sufficient data rate for the group of nodes behind it. To provide reliability, this paper proposes an adaptive multihoming architecture of multiple mobile routers. Proposed architecture makes use of different mobility characteristics of different vehicles. Simulation results with different configurations show that the proposed architecture increases session preservation thus increases reliability and reduces packet loss. We also show that the proposed architecture is adaptive to heterogeneous access environment which provide different access coverage areas and data rates. The result shows that our architecture achieves sufficient data rates as well as session preservation.

  • PDF

Gateway Architecture for Ubiquitous Access to ZigBee-Based Sensor Networks (ZigBee 기반 센서 네트워크로의 유비쿼터스 접근을 위한 게이트웨이 아키텍처)

  • Heo, Ung;Peng, Qiu;You, Kang-Soo;Choi, Jae-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.8
    • /
    • pp.73-83
    • /
    • 2010
  • This paper investigates protocol architecture of a Web-ZigBee gateway for interconnecting TCP/IP-based networks and ZigBee/IEEE802.15.4-based wireless sensor networks. The Web-ZigBee gateway delivers data between the TCP/IP network and the ZigBee network. Since those two networks have different communication protocols, a protocol translation mechanism is needed. Herein, we propose a method to deliver query messages from the Internet to the sensor network and receive data from sensors. The protocol translation is performed in the translation layer that is placed above the two application layers, i.e., the Internet application layer and ZigBee application layer. Among various interfaces, we use CGI programming to take care of translation functions efficiently. The CGI manages query information from a client on the Internet and data from the ZigBee sensor network. Whereas the TCP/IP enabled sensor network overlays two heterogeneous communication protocols, overlaying layers increase the complexity and cost of implementing the sensor network. On the contrary, the sensors in our gateway-based system are not only light (because each communication protocol works independently without overlaying), but also efficient because the translation layer mostly alleviates header overloading.