• Title/Summary/Keyword: heterogeneous vehicle routing problem

Search Result 14, Processing Time 0.026 seconds

A Heuristic for Fleet Size and Mix Vehicle Routing Problem with Time Deadline (고객의 납기마감시간이 존재하는 이기종 차량경로문제의 발견적 해법)

  • Kang Chung-Sang;Lee Jun-Su
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.2
    • /
    • pp.8-17
    • /
    • 2005
  • This paper dealt with a kind of heterogeneous vehicle routing problem with known demand and time deadline of customers. The customers are supposed to have one of tight deadline and loose deadline. The demand of customers with tight deadline must be fulfilled in the deadline. However, the late delivery is allowed to customers with loose deadline. That is, the paper suggests a model to minimize total acquisition cost, total travel distance and total violation time for a fleet size and mix vehicle routing problem with time deadline, and proposes a heuristic algorithm for the model. The proposed algorithm consists of two phases, i.e. generation of an initial solution and improvement of the current solution. An initial solution is generated based on a modified insertion heuristic and iterative Improvement procedure is accomplished using neighborhood generation methods such as swap and reallocation. The proposed algorithm is evaluated using a well known numerical example.

A Vehicle Routing Problem with Double-Trip and Multiple Depots by using Modified Genetic Algorithm (수정 유전자 알고리듬을 이용한 중복방문, 다중차고 차량경로문제)

  • Jeon, Geon-Wook;Shim, Jae-Young
    • IE interfaces
    • /
    • v.17 no.spc
    • /
    • pp.28-36
    • /
    • 2004
  • The main purpose of this study is to find out the optimal solution of the vehicle routing problem considering heterogeneous vehicle(s), double-trips, and multi depots. This study suggests a mathematical programming model with new numerical formula which considers the amount of delivery and sub-tour elimination and gives optimal solution by using OPL-STUDIO(ILOG). This study also suggests modified genetic algorithm which considers the improvement of the creation method for initial solution, application of demanding point, individual and last learning method in order to find excellent solution, survival probability of infeasible solution for allowance, and floating mutation rate for escaping from local solution. The suggested modified genetic algorithm is compared with optimal solution of the existing problems. We found the better solution rather than the existing genetic algorithm. The suggested modified genetic algorithm is tested by Eilon and Fisher data(Eilon 22, Eilon 23, Eilon 30, Eilon 33, and Fisher 10), respectively.

Study on Delivery of Military Drones and Transport UGVs with Time Constraints Using Hybrid Genetic Algorithms (하이브리드 유전 알고리즘을 이용한 시간제약이 있는 군수 드론 및 수송 UGV 혼합배송 문제 연구)

  • Lee, Jeonghun;Kim, Suhwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.425-433
    • /
    • 2022
  • This paper studies the method of delivering munitions using both drones and UGVs that are developing along with the 4th Industrial Revolution. While drones are more mobile than UGVs, their loading capacity is small, and UGVs have relatively less mobility than drones, but their loading capacity is better. Therefore, by simultaneously operating these two delivery means, each other's shortcomings may be compensated. In addition, on actual battlefields, time constraints are an important factor in delivering munitions. Therefore, assuming an actual battlefield environment with a time limit, we establish delivery routes that minimize delivery time by operating both drones and UGVs with different capacities and speeds. If the delivery is not completed within the time limit, penalties are imposed. We devised the hybrid genetic algorithm to find solutions to the proposed model, and as results of the experiment, we showed the algorithm we presented solved the actual size problems in a short time.