• Title/Summary/Keyword: heterogeneous radio access technologies (RATs)

Search Result 3, Processing Time 0.017 seconds

Optimal Vertical Handover Control Policies for Cooperative Wireless Networks

  • Papadaki, Katerina;Friderikos, Vasilis
    • Journal of Communications and Networks
    • /
    • v.8 no.4
    • /
    • pp.442-450
    • /
    • 2006
  • Inter-operability between heterogeneous radio access technologies (RATs), in the sense of seamless vertical han-dover (VHO) support with common radio resource management (CRRM) functionalities, has recently attracted a significant research attention and has become a prominent issue in standardization fora. In this paper, we formulate the problem of load balancing between cooperative RAT's as a mathematical program and by trading off a pre-defined delay tolerance per request we propose a vertical handover batch processing (VHBP) scheme. To quantify the performance of the proposed VHBP scheme we compare it with a baseline processing scheme, where each VHO request is processed independently under a number of different network scenarios. Numerical investigations reveal significant net benefits of the proposed scheme compared with the baseline, both in terms of achieved load balancing levels but also with regard to the acceptance rate of the VHO requests.

An ANP-based Resource Management Scheme in Heterogeneous Wireless Networks Considering Multiple Criteria (다기준 요소를 고려한 ANP 기반 이기종 무선 네트워크 자원관리 방안)

  • Shin, Choong-Yong;Cho, Jin-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.8B
    • /
    • pp.910-920
    • /
    • 2011
  • In a heterogeneous wireless environment, a variety of Radio Access Technologies (RATs) coexist. Since the number of RATs is anticipated to increase in the near future, it is desirable to have radio and network resources managed in a cooperative manner using the Common Radio Resource Management (CRRM) strategy. In order to make RAT-specific radio resources manageable in CRRM, this paper proposes the Analytical Network Process (ANP) based resource management scheme that efficiently allocates resources among heterogeneous wireless networks. The proposed ANP-based method is flexible enough to be used in any network environment and can consider a multitude of decision factors. In addition, the proposed scheme uses a radio bandwidth model, which properly reflects transmission rates under given channel conditions, as the actual radio resources to be allocated. The model considers the AMC (Adaptive Modulation and Coding) scheme that is widely used in current broadband wireless access technologies, and thus, packet service characteristics, such as response time, can be analyzed. The effectiveness and flexibility of the proposed method are demonstrated by implementing a number of existing factors on heterogeneous networks environment.

A Receiver-Aided Seamless And Smooth Inter-RAT Handover At Layer-2

  • Liu, Bin;Song, Rongfang;Hu, Haifeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4015-4033
    • /
    • 2015
  • The future mobile networks consist of hyper-dense heterogeneous and small cell networks of same or different radio access technologies (RAT). Integrating mobile networks of different RATs to provide seamless and smooth mobility service will be the target of future mobile converged network. Generally, handover from high-speed networks to low-speed networks faces many challenges from application perspective, such as abrupt bandwidth variation, packet loss, round trip time variation, connection disruption, and transmission blackout. Existing inter-RAT handover solutions cannot solve all the problems at the same time. Based on the high-layer convergence sublayer design, a new receiver-aided soft inter-RAT handover is proposed. This soft handover scheme takes advantage of multihoming ability of multi-mode mobile station (MS) to smooth handover procedure. In addition, handover procedure is seamless and applicable to frequent handover scenarios. The simulation results conducted in UMTS-WiMAX converged network scenario show that: in case of TCP traffics for handover from WiMAX to UMTS, not only handover latency and packet loss are eliminated completely, but also abrupt bandwidth/wireless RTT variation is smoothed. These delightful features make this soft handover scheme be a reasonable candidate of mobility management for future mobile converged networks.