KSII Transactions on Internet and Information Systems (TIIS)
/
제14권9호
/
pp.3762-3781
/
2020
Infrared pedestrian target recognition is a vital problem of significant interest in computer vision. In this work, a novel infrared pedestrian target recognition method that uses heterogeneous features with multi-kernel transfer learning is proposed. Firstly, to exploit the characteristics of infrared pedestrian targets fully, a novel multi-scale monogenic filtering-based completed local binary pattern descriptor, referred to as MSMF-CLBP, is designed to extract the texture information, and then an improved histogram of oriented gradient-fisher vector descriptor, referred to as HOG-FV, is proposed to extract the shape information. Second, to enrich the semantic content of feature expression, these two heterogeneous features are integrated to get more complete representation for infrared pedestrian targets. Third, to overcome the defects, such as poor generalization, scarcity of tagged infrared samples, distributional and semantic deviations between the training and testing samples, of the state-of-the-art classifiers, an effective multi-kernel transfer learning classifier called MK-TrAdaBoost is designed. Experimental results show that the proposed method outperforms many state-of-the-art recognition approaches for infrared pedestrian targets.
최근 많은 지능형 보안 시나리오 및 범죄수사에서는 사진이 아닌 얼굴 영상과 다수의 정면 사진과의 매칭을 요구한다. 기존의 얼굴 인식 시스템은 이러한 요구를 충분히 충족시킬 수 없다. 본 논문에서는 동일 인물의 스케치와 사진 간의 양식 차이를 줄임으로써, 이질적 얼굴 인식 시스템의 성능을 향상시키는 알고리즘을 제안한다. 제안하는 알고리즘은 텍스처 기술자들(그레이 레벨 동시 발생 행렬, 멀티스케일 지역 이진 패턴)을 통하여 영상의 텍스처 특징들을 각각 추출하고, 이를 바탕으로 고유특징 정규화 및 추출기법을 통해 변환 행렬을 생성하게 된다. 이렇게 생성된 벡터들 간 계산된 스코어 값은 스코어 정규화 방식들을 통하여 최종적으로 스케치 영상의 신원을 인식하게 된다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제7권4호
/
pp.819-833
/
2013
Computing global features based on local features using a bio-inspired framework has shown promising performance. However, for some tough applications with large intra-class variances, a single local feature is inadequate to represent all the attributes of the images. To integrate the complementary abilities of multiple local features, in this paper we have extended the efficacy of the bio-inspired framework, HMAX, to adapt heterogeneous features for global feature extraction. Given multiple global features, we propose an approach, designated as parameterized metric learning, for high dimensional feature fusion. The fusion parameters are solved by maximizing the canonical correlation with respect to the parameters. Experimental results show that our method achieves significant improvements over the benchmark bio-inspired framework, HMAX, and other related methods on the Caltech dataset, under varying numbers of training samples and feature elements.
우리는 유체의 얇은 막을 명시적으로 표현하고 보존할 수 있는 CPU-GPU 이기종 컴퓨팅 기반의 유체 시뮬레이션 기법을 소개한다. 본 논문에서 가장 큰 기여는 얇은 유체표면에서 쪼개지거나 밀도가 높은 지점에서 붕괴되어 유체표면에 나타나는 Hole을 방지하는 입자 기반 프레임워크를 GPU를 활용한다는 것이다. 유체표면을 추적하는 기존의 방법과는 달리, 제안된 프레임워크는 CPU-GPU 프레임워크상에서 수치적 확산이나 꼬임문제 없이 안정적으로 토폴로지 변화를 처리할 수 있다. 얇은 표면의 특징은 이방성 커널(Anisotropic kernel)과 주성분 분석(Principal component analysis; PCA)을 GPU상에서 수행하여 유체의 방향성을 빠르게 찾고, 새로운 유체입자의 위치를 결정하기 위해 계산하는, 후보위치 추출 과정의 효율성을 CPU-GPU 이기종 컴퓨팅 기술 기반으로 빠르게 계산한다. 제안된 알고리즘은 직관적으로 구현되며, 병렬화가 쉽고 시각적으로 디테일한 액체의 얇은 표면을 빠르게 애니메이션 할 수 있다.
연구전선이란 연구논문들 간에 인용이 빈번하게 발생하며, 지속적으로 발전이 이루어지고 있는 연구영역을 의미한다. 연구행위가 집중되는 핵심 연구분야로 발전 가능성이 높은 연구전선을 조기에 예측해내는 것은 학계와 산업계, 정부기관, 나아가 국가의 과학기술 발전에 큰 유익을 가져다 줄 수 있는 유용한 사회적 자원이 된다. 본 연구는 복합자질을 활용하여 연구전선을 추론하는 모델을 제시하고자 시도하였다. 연구전선 추론은 핵심 연구영역으로 발전할 가능성이 높은 문헌들이 포함될 수 있도록 문헌을 복합자질로 표현하고, 그 자질들을 심층학습하여 새로 발행된 문헌들이 연구전선에 포함될 수 있는지 그 가능성을 예측하였다. 서지 자질, 네트워크 자질, 내용 자질 등 복합자질 세트를 사용하여 문헌을 표현하고 피인용을 많이 받을 가능성이 있는 문헌을 추론하기 위해서 확률기반 팩터그래프 모델을 적용하였다. 추출된 자질들은 팩터그래프의 변수로 표현되어 합-곱 알고리즘과 접합 트리 알고리즘을 적용하여 연구전선 추론이 이루어졌다. 팩터그래프 확률모델을 적용하여 연구전선을 추론 구축한 결과, 서지결합도 4 이상으로 구축된 베이스라인 연구전선과 큰 차이를 보였다. 팩터그래프 기반 연구전선그룹이 서지결합 기반 연구전선그룹보다 문헌 간의 직접 연결정도가 강하며 연결 관계에 있지 않은 두 개의 문헌을 연결시키는 매개정도 또한 강한 집단으로 나타났다.
본 논문은 그레이레벨히스토그램을 이용한 움직임 영역검출, 퍼지 클러스터링을 이용한 칼라 분할, 그레이 레벨 동시발생 행렬을 이용한 특징 추출 및 서포터 벡터 머신을 이용한 화재 분류 등과 같은 다중 이종 알고리즘을 포함하고 있는 효과적인 화재 감지 방법을 제안한다. 제안한 방법은 움직임 영역을 검출하기 위해그레이레벨히스토그램에 기초한 최적의 임계값을 결정하고 난 후, CIE LAB 칼라 공간에서 퍼지 클러스터링을 적용하여 칼라 분할을 수행한다. 이러한 두 단계는 화재의 후보 영역을 기술하는데 도움이 된다. 다음으로 그레이 레벨 동시발생 행렬을 이용하여 화재의 특징을 추출하고, 이러한 특징들은 화재인지 아닌지를 분류하기 위해 서포터 벡터 머신의 입력으로 사용된다. 제안한 방법을 평가하기위해 기존의 두 알고리즘과 화재 검출율 및 오류 화재 검출율에서 비교하였다. 모의실험결과, 제안한 방법은 97.94%의 화재 검출율 및 4.63%의 오류 화재 검출율을 보임으로써 기존의 화재 감지 알고리즘보다 우수성을 보였다.
Izadi, Pantea;Noruzinia, Mehrdad;Fereidooni, Foruzandeh;Nateghi, Mohammad Reza
Asian Pacific Journal of Cancer Prevention
/
제13권8호
/
pp.4113-4117
/
2012
Breast cancer is a prevalent heterogeneous malignant disease. Gene expression profiling by DNA microarray can classify breast tumors into five different molecular subtypes: luminal A, luminal B, HER-2, basal and normal-like which have differing prognosis. Recently it has been shown that immunohistochemistry (IHC) markers including estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (Her2), can divide tumors to main subtypes: luminal A (ER+; PR+/-; HER-2-), luminal B (ER+;PR+/-; HER-2+), basal-like (ER-;PR-;HER2-) and Her2+ (ER-; PR-; HER-2+). Some subtypes such as basal-like subtype have been characterized by poor prognosis and reduced overall survival. Due to the importance of the ER signaling pathway in mammary cell proliferation; it appears that epigenetic changes in the $ER{\alpha}$ gene as a central component of this pathway, may contribute to prognostic prediction. Thus this study aimed to clarify the correlation of different IHC-based subtypes of breast tumors with $ER{\alpha}$ methylation in Iranian breast cancer patients. For this purpose one hundred fresh breast tumors obtained by surgical resection underwent DNA extraction for assessment of their ER methylation status by methylation specific PCR (MSP). These tumors were classified into main subtypes according to IHC markers and data were collected on pathological features of the patients. $ER{\alpha}$ methylation was found in 25 of 28 (89.3%) basal tumors, 21 of 24 (87.5%) Her2+ tumors, 18 of 34 (52.9%) luminal A tumors and 7 of 14 (50%) luminal B tumors. A strong correlation was found between $ER{\alpha}$ methylation and poor prognosis tumor subtypes (basal and Her2+) in patients (P<0.001). Our findings show that $ER{\alpha}$ methylation is correlated with poor prognosis subtypes of breast tumors in Iranian patients and may play an important role in pathogenesis of the more aggressive breast tumors.
최근 딥러닝 기술이 주목을 받고 있다. 대중들의 관심을 받았던 국제 이미지 인식 기술 대회(ILSVR)와 알파고(AlphaGo)에서 사용된 딥러닝 기술이 바로 합성곱 신경망(CNN; Convolution Neural Network)이다. 합성곱 신경망은 입력 이미지를 작은 구역으로 나누어 부분적인 특징을 인식하고 이것을 결합하여 전체를 인식하는 특징을 가진다. 이러한 딥러닝 기술이 우리의 생활에 있어 많은 변화를 야기할 것이라는 기대를 주고 있지만 현재까지는 이미지 인식과 자연어 처리 등에 그 성과가 국한되어 있다. 비즈니스 문제에 대한 딥러닝 활용은 아직까지 초기 연구 단계로 향후 마케팅 응답 예측이나 허위 거래 식별, 부도 예측과 같은 전통적 비즈니스 문제들에 대해 보다 깊게 활용되고 그 성능이 입증된다면 딥러닝 기술의 활용 가치가 보다 더 주목받게 될 것으로 기대된다. 이러한 때 비교적 고객 식별이 용이하고 활용 가치가 높은 빅데이터를 보유하고 있는 전자상거래 기업의 사례를 바탕으로 하여 딥러닝 기술의 비즈니스 문제 해결 가능성을 진단해보는 것은 학술적으로 매우 의미 있는 시도라 할 수 있겠다. 이에 본 연구에서는 전자상거래 기업의 고객 행태 예측력을 높이기 위한 방안으로 합성곱 신경망을 활용한 '이종 정보 결합(Heterogeneous Information Integration)의 CNN 모델'을 제시한다. 이는 정형과 비정형 정보를 결합하여 다층 퍼셉트론 구조의 합성곱 신경망에서 학습시키는 모델로서 최적의 성능을 발휘하도록 '이종 정보 결합'과 '비정형 정보의 벡터 전환', 그리고 '다층 퍼셉트론 설계'로 하는 3개의 내부 아키텍처를 정의하고 각 아키텍처 단위로 구성되는 방식에 따른 성능을 평가하여 그 결과를 바탕으로 제안 모델을 확정하고 그 성능을 평가해보고자 한다. 고객 행태 예측을 위한 목표 변수는 전자상거래 기업에서 중요하게 관리하고 있는 재구매 고객, 이탈 고객, 고빈도 구매 고객, 고빈도 반품 고객, 고단가 구매 고객, 고할인 구매 고객 등 모두 6개의 이진 분류 문제로 정의한다. 제안한 모델의 유용성을 검증하기 위해서 국내 특정 전자상거래 기업의 실제 데이터를 활용하여 실험을 수행하였다. 실험 결과 정형과 비정형 정보를 결합하여 CNN을 활용한 제안 모델이 NBC(Naïve Bayes classification)과 SVM(Support vector machine), 그리고 ANN(Artificial neural network)에 비해서 예측 정확도와 F1 Measure가 높게 평가되었다. 또 NBC, SVM, ANN에서 정형 정보만을 사용할 때 보다 정형과 비정형 정보를 결합하여 입력 변수로 함께 활용한 경우에 예측 정확도가 향상되는 것으로 나타났다. 따라서 실험 결과로부터 비정형 정보의 활용이 고객 행태 예측의 정확도 향상에 기여한다는 점과 CNN 기법의 특징 추출 알고리즘이 VOC에 사용된 단어들의 분포와 위치 정보를 해석하여 문장의 의미를 파악하는데 효과적이라는 점을 실증적으로 확인하였다는데 그 의미가 있다고 할 수 있겠다. 이를 통해서 CNN 기법이 지금까지 소개된 이미지 인식이나 자연어 처리 분야 외에 비즈니스 문제 해결에도 활용 가치가 높다는 점을 확인하였다는데 이 연구의 의의가 있다 하겠다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.