• Title/Summary/Keyword: heteroduplex

Search Result 17, Processing Time 0.022 seconds

Rapid and Efficient Molecular Cloning of Rat Liver Full-length LDH A-cDNA (효율높은 cloning system을 통한 Rat Liver 전장 낙산탈수소효소 A-cDNA의 제조 및 분리동정)

  • 노옥경;배석철;이승기
    • YAKHAK HOEJI
    • /
    • v.31 no.2
    • /
    • pp.116-125
    • /
    • 1987
  • It is still difficult and time consuming to obtain cDNA sequences that contain the entire nucleotide sequence of the corresponding mRNA. A rapid and high efficient cloning method to obtain full-length cDNA segments is thus developed. The cloning procedure described here consists of the construction of oligo(dT)-tailed vector primer using pWR34 plasmid, polyadenylation of mRNA-cDNA heteroduplex using terminal deoxytransferase, and replacement of MRNA strand with DNA by RNase H and DNA polymerase I. The restriction endonuclease analysis shows that the size of inserted-cDNA is in the range of 1.5~4.0 kb long suggesting that most of cloned cDNA are full-length or nearly full-length cDNA. The plasmid-DNA recombinants obtained were 4$\times$$10^5$~$10^{6}$ per $\mu\textrm{g}$ of rat liver poly (A$^+$)mRNA, which is 4 to 10 fold higher cloning efficiency in comparison to the presently used methods for full-length cDNA cloning. The results indicate that the described cloning system is much simpler, less time consuming, and very efficient cloning method to construct a cDNA library.

  • PDF

Effect of Neighbor Base Sequences on the Base Pair Stabilities at d(CXG) and d(GXC) in Human ε-globin Promoter (사람의 ε-글로빈 프로모트에서 d(CXG)와 d(GXC)의 안정성에 인접한 염기 서열들의 영향 에 관한 연구)

  • Chung, In-Ae;Gang, Jong-Back
    • Journal of Life Science
    • /
    • v.12 no.2
    • /
    • pp.208-212
    • /
    • 2002
  • Human $\varepsilon$-globin DNA fragment was used to determine the thermal stabilities of base pairs at d(CXG) and d(GXC) by Temperature Gradient Gel Electrophoresis(TGGE). The base pair stability depends on the hydrogen bonding interaction and base stacking interaction of neighbor base sequence. The orders of base pair stabilities were T.AG.A = A.G>C.T>T.C>C.A>A.C for d(GXC).d(GYC).

Synthesis and base pairing properties of DNA-RNA heteroduplex containing 5-hydroxyuridine

  • Cui, Song;Kim, Yong-Hoon;Jin, Cheng-Hao;Kim, Sang-Kook;Rhee, Man-hee;Kwon, Oh-Shin;Moon, Byung-Jo
    • BMB Reports
    • /
    • v.42 no.6
    • /
    • pp.373-379
    • /
    • 2009
  • 5-Hydroxyuridine (5-OHU) is a major lesion of uridine and cytosine produced in RNA by various chemical oxidants. To elucidate its biochemical and biophysical effects on RNA replication, the site-specifically modified oligoribonucleotides containing 5-OHU were synthesized with C5-hydroxy-5'-ODMTr-2'-TBDMS-uridine phosphoramidite using automated solid phase synthesis. The base-pairing properties of nucleotides opposite 5-OHU in 24 mer oligoribonulcleotides with dNTP were studied using three reverse transcriptases (Super-$Script^{TM}II$-, AMV-, MMLV-RT) in cDNA synthesis. Adenine as well as guanine was incorporated preferentially by all reverse transcriptases. In the UV-melting temperature experiment, the results from the relative stabilities of the base pairs were A : 5-OHU > G : 5-OHU > T : 5-OHU $\approx$ C : 5-OHU. Circular Dichroism (CD) studies showed that DNA-RNA containing 5- OHU heteroduplexes exhibit a similar conformation between the A-type RNA and B-type DNA. These results suggest that 5- OHU from oxidative damage was mainly influenced by adenine mismatch.

Detection of Germline Mutations in Argentine Retinoblastoma Patients: Low and Full Penetrance Retinoblastoma Caused by the Same Germline Truncating Mutation

  • Dalamon, Viviana;Surace, Ezequiel;Giliberto, Florencia;Ferreiro, Veronica;Fernandez, Cecilia;Szijan, Irene
    • BMB Reports
    • /
    • v.37 no.2
    • /
    • pp.246-253
    • /
    • 2004
  • Constitutional RB1 gene mutations were studied in a series of 21 families with unilateral and bilateral retinoblastoma patients. Peripheral blood lymphocytes were analyzed by "exon by exon" PCR-heteroduplex and sequencing. Mutations were identified in 6 (29%) of the patients. One mutation corresponded to an intronic polymorphism in g.174351T > A. The other five mutations resulted C to T exonic transitions, four were CGA sequences (g.65386, g.150037 in two patients, and g.162237), creating stop codons and presumably truncated proteins. The fifth one was new and resulted in alanine to valine substitution (g.73774). Two patients had the same the germline truncated mutation (g.150037C > T), one with a familial bilateral early onset retinoblastoma and one with a sporadic unilateral late onset retinoblastoma. The later type has not been previously described. This finding is discussed in the genotype/phenotype correlation context. Additionally, a single nucleotide change was found in six studied samples, where a C to T homozygous transversion was identified in intron 26 (IVS26 + 28). It is worthy the non concordance of the nucleotide with the published sequence. This analysis proved to be a useful method for the detection of mutations in the RB1 gene, and contributed to the adequate genetic counseling to patients and relatives.

DNA recombinase Rad51 is regulated with UV-induced DNA damage and the DNA mismatch repair inhibitor CdCl2 in HC11 cells

  • You, Hyeong-Ju;Kim, Ga-Yeon;Kim, Seung-Yeon;Kang, Man-Jong
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.3
    • /
    • pp.121-128
    • /
    • 2021
  • Increasing the efficiency of HR (homologous recombination) is important for a successful knock-in. Rad51 is mainly involved in homologous recombination and is associated with strand invasion. The HR-related mismatch repair system maintains HR fidelity by heteroduplex rejection and repair. Therefore, the purpose of this study is to control Rad51, which plays a critical role in HR, through UV-induced DNA damage. It is also to confirm the effect on the expression of MMR related genes (Msh2, Msh3, Msh6, Mlh1, Pms2) and HR-related genes closely related to HR through treatment with the MMR inhibitor CdCl2. The mRNA expression of Rad51 gene was confirmed in both HC11 cells and mouse testes, but the mRNA expression of Dmc1 gene was confirmed only in mouse testes. The protein expression of Rad51 and Dmc1 gene increased in UV-irradiated HC11 cells. After 72 hours of treatment with 1 ㎛ of CdCl2, the mRNA expression level of Msh3, Pms2, and Rad51 decreased, but the mRNA expression level of Msh6 and Mlh1 increased in HC11 cells. There was no significant difference in Msh2 mRNA expression between CdCl2 untreated-group and the 72 hours treated group. In conclusion, HR-related gene (Rad51) was increased by UV-induced DNA damage. Treatment of the MMR inhibitor CdCl2 in HC11 cells decreased the mRNA expression of Rad51.

Evaluation of Genetic Variations in miRNA-Binding Sites of BRCA1 and BRCA2 Genes as Risk Factors for the Development of Early-Onset and/or Familial Breast Cancer

  • Erturk, Elif;Cecener, Gulsah;Polatkan, Volkan;Gokgoz, Sehsuvar;Egeli, Unal;Tunca, Berrin;Tezcan, Gulcin;Demirdogen, Elif;Ak, Secil;Tasdelen, Ismet
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.19
    • /
    • pp.8319-8324
    • /
    • 2014
  • Although genetic markers identifying women at an increased risk of developing breast cancer exist, the majority of inherited risk factors remain elusive. Mutations in the BRCA1/BRCA2 gene confer a substantial increase in breast cancer risk, yet routine clinical genetic screening is limited to the coding regions and intronexon boundaries, precluding the identification of mutations in noncoding and untranslated regions. Because 3' untranslated region (3'UTR) polymorphisms disrupting microRNA (miRNA) binding can be functional and can act as genetic markers of cancer risk, we aimed to determine genetic variation in the 3'UTR of BRCA1/BRCA2 in familial and early-onset breast cancer patients with and without mutations in the coding regions of BRCA1/BRCA2 and to identify specific 3'UTR variants that may be risk factors for cancer development. The 3'UTRs of the BRCA1 and BRCA2 genes were screened by heteroduplex analysis and DNA sequencing in 100 patients from 46 BRCA1/2 families, 54 non-BRCA1/2 families, and 47 geographically matched controls. Two polymorphisms were identified. SNPs $c.^*1287C$ >T (rs12516) (BRCA1) and $c.^*105A$ >C (rs15869) (BRCA2) were identified in 27% and 24% of patients, respectively. These 2 variants were also identified in controls with no family history of cancer (23.4% and 23.4%, respectively). In comparison to variations in the 3'UTR region of the BRCA1/2 genes and the BRCA1/2 mutational status in patients, there was a statistically significant relationship between the BRCA1 gene polymorphism $c.^*1287C$ >T (rs12516) and BRCA1 mutations (p=0.035) by Fisher's Exact Test. SNP $c.^*1287C$ >T (rs12516) of the BRCA1 gene may have potential use as a genetic marker of an increased risk of developing breast cancer and likely represents a non-coding sequence variation in BRCA1 that impacts BRCA1 function and leads to increased early-onset and/or familial breast cancer risk in the Turkish population.

Relationship between DNA mismatch repair and CRISPR/Cas9-mediated knock-in in the bovine β-casein gene locus

  • Kim, Seung-Yeon;Kim, Ga-Yeon;You, Hyeong-Ju;Kang, Man-Jong
    • Animal Bioscience
    • /
    • v.35 no.1
    • /
    • pp.126-137
    • /
    • 2022
  • Objective: Efficient gene editing technology is critical for successful knock-in in domestic animals. RAD51 recombinase (RAD51) gene plays an important role in strand invasion during homologous recombination (HR) in mammals, and is regulated by checkpoint kinase 1 (CHK1) and CHK2 genes, which are upstream elements of RAD51 recombinase (RAD51). In addition, mismatch repair (MMR) system is inextricably linked to HR-related pathways and regulates HR via heteroduplex rejection. Thus, the aim of this study was to investigate whether clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9)-mediated knock-in efficiency of human lactoferrin (hLF) knock-in vector in the bovine β-casein gene locus can be increased by suppressing DNA MMR-related genes (MSH2, MSH3, MSH6, MLH1, and PMS2) and overexpressing DNA double-strand break (DSB) repair-related genes (RAD51, CHK1, CHK2). Methods: Bovine mammary epithelial (MAC-T) cells were transfected with a knock-in vector, RAD51, CHK1, or CHK2 overexpression vector and CRISPR/sgRNA expression vector to target the bovine β-casein gene locus, followed by treatment of the cells with CdCl2 for 24 hours. After 3 days of CdCl2 treatment, the knock-in efficiency was confirmed by polymerase chain reaction (PCR). The mRNA expression levels of DNA MMR-related and DNA DSB repair-related genes were assessed by quantitative real-time PCR (RT-qPCR). Results: Treatment with CdCl2 decreased the mRNA expression of RAD51 and MMRrelated genes but did not increase the knock-in efficiency in MAC-T cells. Also, the overexpression of DNA DSB repair-related genes in MAC-T cells did not significantly affect the mRNA expression of MMR-related genes and failed to increase the knock-in efficiency. Conclusion: Treatment with CdCl2 inhibited the mRNA levels of RAD51 and DNA MMR-related genes in MAC-T cells. However, the function of MMR pathway in relation to HR may differ in various cell types or species.