• 제목/요약/키워드: hessian

검색결과 111건 처리시간 0.026초

데이터 중요도의 사전 평가를 이용한 증가학습을 위한 데이터 선택 방법 (Data selection method for Incremental learning using prior evaluation of data importance)

  • 이선영;조성준;방승양
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (2)
    • /
    • pp.339-341
    • /
    • 1998
  • 다층 퍼셉트론 학습은 학습 데이터의 능동적인 선택 여부에 따라 능동적 학습(Active learning)과 피동적 학습(Passive learning)으로 구분할 수 있다. 기존의 능동적 학습 방법들은 학습 데이터의 중요도를 측정할 수 있는 기준(measure)을 제시하고 이 기준에 따라 학습 데이터를 선택하는 방법을 취하고 있다. 이 방법들은 학습 데이터 선택을 위해 Hessian Approximation과 같은 복잡한 계산이나 학습 데이터를 선택하는 과정에 있어서 데이터의 중요도를 평가하기 위한 반복적인 계산을 필요로 한다. 본 논문에서는 학습 데이터 선택 시 반복적인 계산이 필요하지 않는 비교사 학습을 이용한 능동적 학습 데이터 선택 방법을 제안하고 그 수렴 특성과 일반화 성능을 분석한다. 또한 비교 실험을 통하여 제안된 방법이 기존의 능동적 학습방법보다 간단한 계산만으로 수렴 속도를 향상시키며 일반화에도 뒤떨어지지 않음을 보인다.

  • PDF

조립품을 위한 비선형 공차할당 (Nonlinear Tolerance Allocation for Assembly Components)

  • 김광수;최후곤
    • 산업공학
    • /
    • 제16권spc호
    • /
    • pp.39-44
    • /
    • 2003
  • As one of many design variables, the role of dimension tolerances is to restrict the amount of size variation in a manufactured feature while ensuring functionality. In this study, a nonlinear integer model has been modeled to allocate the optimal tolerance to each individual feature at a minimum manufacturing cost. While a normal distribution determines statistically worst tolerances with its symmetrical property in many previous tolerance allocation studies, a asymmetrical distribution is more realistic because its mean is not always coincident with a process center. A nonlinear integer model is modeled to allocate the optimal tolerance to a feature based on a beta distribution at a minimum total cost. The total cost as a function of tolerances is defined by machining cost and quality loss. After the convexity of manufacturing cost is checked by the Hessian matrix, the model is solved by the Complex Method. Finally, a numerical example is presented demonstrating successful model implementation for a nonlinear design case.

Solving a Matrix Polynomial by Conjugate Gradient Methods

  • Ko, Hyun-Ji;Kim, Hyun-Min
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제11권4호
    • /
    • pp.39-46
    • /
    • 2007
  • One of well known and much studied nonlinear matrix equations is the matrix polynomial which has the form G(X)=$A_0X^m+A_1X^{m-1}+{\cdots}+A_m$ where $A_0$, $A_1$, ${\cdots}$, $A_m$ and X are $n{\times}n$ real matrices. We show how the minimization methods can be used to solve the matrix polynomial G(X) and give some numerical experiments. We also compare Polak and Ribi$\acute{e}$re version and Fletcher and Reeves version of conjugate gradient method.

  • PDF

A NOTE ON GCR-LIGHTLIKE WARPED PRODUCT SUBMANIFOLDS IN INDEFINITE KAEHLER MANIFOLDS

  • Kumar, Sangeet;Pruthi, Megha
    • 대한수학회논문집
    • /
    • 제36권4호
    • /
    • pp.783-800
    • /
    • 2021
  • We prove the non-existence of warped product GCR-lightlike submanifolds of the type K × λ KT such that KT is a holomorphic submanifold and K is a totally real submanifold in an indefinite Kaehler manifold $\tilde{K}$. Further, the existence of GCR-lightlike warped product submanifolds of the type KT × λ K is obtained by establishing a characterization theorem in terms of the shape operator and the warping function in an indefinite Kaehler manifold. Consequently, we find some necessary and sufficient conditions for an isometrically immersed GCR-lightlike submanifold in an indefinite Kaehler manifold to be a GCR-lightlike warped product, in terms of the canonical structures f and ω. Moreover, we also derive a geometric estimate for the second fundamental form of GCR-lightlike warped product submanifolds, in terms of the Hessian of the warping function λ.

Theoretical Studies on the Gas-phase Reaction of Methyl Formate with Anions$^\dag$

  • Lee, Ik-Choon;Chung, Dong-Soo;Lee, Bon-Su
    • Bulletin of the Korean Chemical Society
    • /
    • 제10권3호
    • /
    • pp.273-278
    • /
    • 1989
  • The gas-phase reactions of methyl formate with anions, $-NH_2,\;-OH,\;-CH_2CN$, are studied theoretically using the AM1 method. Stationary points are located by the reaction coordinate method, refined by the gradient norm minimization and characterized by the determination of Hessian matrix. Potential energy profiles and the stationary point structures are presented for all conceivable processes. Four reaction paths are found to be possible: formyl proton and methyl proton abstractions, carbonyl addition, and $S_N2$ process. For the most basic anion $-NH_2$ the proton abstraction path is favored, while in other case, $OH\;and\;-CH_2CN$, the carbonyl addition paths are favored. In all cases the $S_N2$ process is the most exothermic, but due to the relatively high activation barrier the process can be ruled out.

Fraud Detection in E-Commerce

  • Alqethami, Sara;Almutanni, Badriah;AlGhamdi, Manal
    • International Journal of Computer Science & Network Security
    • /
    • 제21권6호
    • /
    • pp.200-206
    • /
    • 2021
  • Fraud in e-commerce transaction increased in the last decade especially with the increasing number of online stores and the lockdown that forced more people to pay for services and groceries online using their credit card. Several machine learning methods were proposed to detect fraudulent transaction. Neural networks showed promising results, but it has some few drawbacks that can be overcome using optimization methods. There are two categories of learning optimization methods, first-order methods which utilizes gradient information to construct the next training iteration whereas, and second-order methods which derivatives use Hessian to calculate the iteration based on the optimization trajectory. There also some training refinements procedures that aims to potentially enhance the original accuracy while possibly reduce the model size. This paper investigate the performance of several NN models in detecting fraud in e-commerce transaction. The backpropagation model which is classified as first learning algorithm achieved the best accuracy 96% among all the models.

Identifiability of Ludwik's law parameters depending on the sample geometry via inverse identification procedure

  • Zaplatic, Andrija;Tomicevic, Zvonimir;Cakmak, Damjan;Hild, Francois
    • Coupled systems mechanics
    • /
    • 제11권2호
    • /
    • pp.133-149
    • /
    • 2022
  • The accurate prediction of elastoplasticity under prescribed workloads is essential in the optimization of engineering structures. Mechanical experiments are carried out with the goal of obtaining reliable sets of material parameters for a chosen constitutive law via inverse identification. In this work, two sample geometries made of high strength steel plates were evaluated to determine the optimal configuration for the identification of Ludwik's nonlinear isotropic hardening law. Finite element model updating(FEMU) was used to calibrate the material parameters. FEMU computes the parameter changes based on the Hessian matrix, and the sensitivity fields that report changes of computed fields with respect to material parameter changes. A sensitivity analysis was performed to determine the influence of the sample geometry on parameter identifiability. It was concluded that the sample with thinned gauge region with a large curvature radius provided more reliable material parameters.

Reconstruction of Collagen Using Tensor-Voting & Graph-Cuts

  • Park, Doyoung
    • 한국정보기술학회 영문논문지
    • /
    • 제9권1호
    • /
    • pp.89-102
    • /
    • 2019
  • Collagen can be used in building artificial skin replacements for treatment of burns and towards the reconstruction of bone as well as researching cell behavior and cellular interaction. The strength of collagen in connective tissue rests on the characteristics of collagen fibers. 3D confocal imaging of collagen fibers enables the characterization of their spatial distribution as related to their function. However, the image stacks acquired with confocal laser-scanning microscope does not clearly show the collagen architecture in 3D. Therefore, we developed a new method to reconstruct, visualize and characterize collagen fibers from fluorescence confocal images. First, we exploit the tensor voting framework to extract sparse reliable information about collagen structure in a 3D image and therefore denoise and filter the acquired image stack. We then propose to segment the collagen fibers by defining an energy term based on the Hessian matrix. This energy term is minimized by a min cut-max flow algorithm that allows adaptive regularization. We demonstrate the efficacy of our methods by visualizing reconstructed collagen from specific 3D image stack.

생체 인식 인식 시스템을 위한 주의 인식 잔차 분할 (Attention Aware Residual U-Net for Biometrics Segmentation)

  • 앤디;이효종
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.300-302
    • /
    • 2022
  • Palm vein identification has attracted attention due to its distinct characteristics and excellent recognition accuracy. However, many contactless palm vein identification systems suffer from the issue of having low-quality palm images, resulting in degradation of recognition accuracy. This paper proposes the use of U-Net architecture to correctly segment the vascular blood vessel from palm images. Attention gate mechanism and residual block are also utilized to effectively learn the crucial features of a specific segmentation task. The experiments were conducted on CASIA dataset. Hessian-based Jerman filtering method is applied to label the palm vein patterns from the original images, then the network is trained to segment the palm vein features from the background noise. The proposed method has obtained 96.24 IoU coefficient and 98.09 dice coefficient.

가상 시점 영상 합성을 위한 깊이 기반 가려짐 영역 메움법 (A Depth-based Disocclusion Filling Method for Virtual Viewpoint Image Synthesis)

  • 안일구;김창익
    • 대한전자공학회논문지SP
    • /
    • 제48권6호
    • /
    • pp.48-60
    • /
    • 2011
  • 최근 3차원 영상과 자유 시점 영상에 대한 연구가 매우 활발하다. 다수의 카메라로부터 취득된 다시점 영상 사이를 가상적으로 이동하며 시청할 수 있는 자유 시점 렌더링은 다양한 분야에 적용될 수 있어 주목받는 연구주제이다. 하지만 다시점 카메라 시스템은 경제적인 비용 및 전송의 제약이 따른다. 이러한 문제를 해결하기 위한 대안으로 한 장의 텍스처 영상과 상응하는 깊이 영상을 이용하여 가상 시점을 생성하는 방법이 주목받고 있다. 가상 시점 생성 시 발생하는 문제점은 원래 시점에서는 객체에 의해 가려져 있던 영역이 가상시점에서는 보이게 된다는 것이다. 이 가려짐 영역을 자연스럽게 채우는 것은 가상 시점 렌더링의 질을 결정한다. 본 논문은 가상 시점 렌더링에서 필연적으로 발생하는 가려짐 영역을 깊이 기반 인페인팅을 이용하여 합성하는 방법을 제안한다. 텍스처 합성 기술에서 우수한 성능을 보인 패치 기반 비모수적 텍스처 합성 방법에서 중요한 요소는 어느 부분을 먼저 채울 지 우선순위를 결정하는 것과 어느 배경 영역으로 채울 지 예제를 결정하는 것이다. 본 논문에서는 헤시안(Hessian) 행렬 구조 텐서(structure tensor)를 이용해 잡음에 강건한 우선순위 설정 방법을 제안한다. 또한 홀 영역을 채울 적절한 배경 패치를 결정하는 데에 있어서는 깊이 영상을 이용해 배경영역을 알아내고 에피폴라 라인을 고려한 패치 결정 방법을 제안한다. 기존 방법들과 객관적인 비교와 주관적인 비교를 통하여 제안된 방법의 우수성을 보이고자 한다.