• Title/Summary/Keyword: hererologous $\alpha$-Amylase

Search Result 1, Processing Time 0.014 seconds

Mitotic Stability of Heterologous $\alpha$-Amylase Gene in Starch-Fermenting Yeast (전분발효 효모에서의 외래 $\alpha$-Amylase 유전자의 세포분열시 안정성 증진)

  • Kim, Jung-Hee;Kim, Keun;Choi, Yong-Keel
    • Korean Journal of Microbiology
    • /
    • v.32 no.4
    • /
    • pp.271-279
    • /
    • 1994
  • To develop a yeast strain which stably secretes both $\alpha$-amylase and glucoamylase and therefore is able to convert starch directly to ethanol, a mouse salivary $\alpha$-amylase cDNA gene with a yeast alcohol dehydrogenase I promoter has been introduced into the cell of a Saccharomyces diactaticus hybrid strain secreting only glucoamylase. To secrete both enzymes more stably without loss of the $\alpha$-amylase gene during a cell-multiplication, an integrating plasmid vector containing $\alpha$-amylase gene was constructed and introduced into the yeast cell. The results showed that the linearized form of the integrating vector was superior in the transformation efficiency and the rate of the expression of the $\alpha$-amylase gene than the circular type of the vector. The yeast transformant having a linearized plasmid vector exhibited higher mitotic stability than the yeast transformant habouring episomat plasmid vector. The transformant containing the linearized vector producing both $\alpha$-amylase and glucoamylase exhibited 2-3 times more amylolytic activity than the original untransformed strain secreting only glucoamylase.

  • PDF