• Title/Summary/Keyword: herbivore feces

Search Result 3, Processing Time 0.017 seconds

Optimization of Cellulolytic Enzyme Production for newly isolated Bacillus sp. H9-1 from Herbivore Feces (초식동물 배설물로부터 분리한 Bacillus sp. H9-1의 섬유소 분해효소생산 최적화)

  • Yoon, Young Mi;An, Gi Hong;Kim, Jung Kon;Cha, Young-Lok;Park, Yu Ri;Ahn, Jong-Woong;Moon, Youn-Ho;Ahn, Seung-Hyun;Koo, Bon-Cheol;Park, Kwang-Geun
    • KSBB Journal
    • /
    • v.28 no.1
    • /
    • pp.42-47
    • /
    • 2013
  • This study was performed to find cellulolytic strain of enzymatic saccharification for bioethanol production. Cellulolytic strains were isolated from 59 different feces of herbivores from Seoul Grand Park located in Gwacheon Gyeonggi-Do. The celluloytic strain was selected by congo red staining and DNS method. Among the isolated strains, H9-1 strain isolated from the feces of rabbit has the highest CMCase activity. H9-1 strain was identified as Bacillus sp. based on 16S rDNA gene sequencing. The optimal conditions for CMCase activity by Bacillus sp. H9-1 were at $40^{\circ}C$ and at initial pH 8.

Xylanase Activity of Bacillus pumilus H10-1 Isolated from Ceratotherium simum Feces (흰 코뿔소 배설물로부터 분리한 Bacillus pumilus H10-1의 Xylanase 활성)

  • Yoon, Young Mi;An, Gi Hong;Kim, Jung Kon;Ahn, Seung-Hyun;Cha, Young-Lok;Yang, Jungwoo;Yu, Kyeong-Dan;Moon, Youn-Ho;Ahn, Jong-Woong;Koo, Bon-Cheol;Choi, In-Hoo
    • KSBB Journal
    • /
    • v.29 no.5
    • /
    • pp.316-322
    • /
    • 2014
  • Xylanase have been used to convert the polymetric xylan into fermentable sugars from the production of ethanol and xylitol from plant biomass. The aim of this study was to isolate and identify xylanolytic bacterium from herbivore feces and was to used the xylanase for enzymatic hydrolysis of biomass. Xylanolytic strains were isolated from 59 different feces of herbivores from Seoul Grand Park located in Gwacheon Gyeonggi-do. The xylanolytic strains were selected by congo red staining and DNS method. Total 67 strains isolated from the herbivores feces were tested for xylanase activity. Among the strains, H10-1, which has the highest xylanase activity, was isolated from feces of Ceratotherium simum. The H10-1 strain was identified as Bacillus pumilus based on its morphological/biochemical characteristics and partial 16S rDNA gene sequences. Culture conditions of B. pumilus H10-1 such as initial medium pH, incubation temperature and incubation time were optimized for maximum xylanase production. And also xylanase produced by B. pumilus H10-1 was applied for the saccharification of Miscanthus sacchariflorus cv. 'Geodae 1', which was pretreated with 1.5M NaOH. The optimized culture conditions of B. pumilus H10-1 were pH 9, $30^{\circ}C$ incubation temperature, and 7 day incubation time, respectively. This xylanase activity under the optimized conditions was $20.4{\pm}3.3IU$. The crude xylanase produced by B. pumilus H10-1 was used for the saccharification of xylan derived from pretreated 'Geodae 1'. The saccharification conditions were $50^{\circ}C$, 200 rpm, and 5 days. Saccharification efficiency of pretreated 'Geodae 1' by B. pumilus H10-1 was 8.2%.

Composting Method and Physicochemical Characteristics of By-products from Home Garden Plants and Small Herbivore Feces (옥수수 부산물과 토끼 분변의 이화학적 성분특성 및 퇴비 제조조건)

  • Kim, Dae-Gyun;Kim, Jin-Young;Lee, Won-Suk;Kim, Hye-Hyeong;Seo, Myung-Whoon;Park, In-Tae;Hyun, Junge;Yoo, Gayoung
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.6
    • /
    • pp.695-703
    • /
    • 2018
  • This study was conducted to suggest a sustainable farming practice forresource recycling in vegetable gardens of North Korea. In North Korea, farmers are allowed to own private vegetable gardens less than $100m^2$. However, usage of fertilizers in private vegetable gardens is very limited due to economic sanctions by UN security council. If North and South Korea initiated the cooperative action in the near future, agricultural sector would be the highest priority cooperation area. Considering the current North Korean situation in agriculture, we would like to suggest a method for producing organic fertilizer manure. For raw materials for producing manure, we selected corn byproduct, which is the most abundant material, and rabbits' feces, which are easily obtained from individual private farms in North Korea. As we cannot get corn byproducts and rabbits' feces from North Korea, we prepared samples of corn byproducts and rabbits; feces from many places in South Korea. After statistical analysis of variance, there was no significant difference in the T-N contents of corn byproducts from Gyeonggi, Gangwon, Chungnam, Chungbuk, Jeollabuk and Gyeongsangnam-dos, which indicates that the fertilizing quality of corn byproducts does not vary significantly in the spatial scale of South. Korea. In this sense, if we use corn samples from Gyeonggi province, they would not be very different from those of North Korean regions. Physicochemical properties of rabbits' feces were different between those eating feed grains and those eating plants only. Hence, we used rabbits' feces of the rabbits from Yeonchun area, which were fed by plants only. Using three different mixing ratios of corn byproducts and rabbits' feces, composting was conducted for 60 days. The mixing ratio of 1:1 produced the manure with % T-N of 1.98% and OM/N ratio of 31.7 after 30 days of composting, which is comparable to the quality of commercial manure.