• Title/Summary/Keyword: herbicide phytotoxicity

Search Result 75, Processing Time 0.018 seconds

Phytotoxic Effect of Herbicides on Upland Crops and Weeds (밭작물(作物) 및 잡초(雜草)에 대한 제초제(除草劑)의 약해(藥害) 약효(藥效))

  • Ryang, H.S.;Chun, J.C.;Yim, J.H.
    • Korean Journal of Weed Science
    • /
    • v.4 no.1
    • /
    • pp.69-78
    • /
    • 1984
  • This study was conducted to select herbicides effective for upland crops and to investigate the cause of crop injury in peanut cultivated with mulching. Crop such as radish (Raphanus acanthiformis Moor.), Chinese cabbage (Brassica raps L.), soybean (Glycine max Merr.), Peanut (Archis hypogaea L.), and marsh mallow (Malva olitoria Nakai) were tolerant to napropamide [2-(${\alpha}$-naphthoxy)-N, N-diethylpropionamide], alachlor [2-chloro-2', 6'-diethyl-N-(methoxymethyl) acetanilide], trifluralin (${\alpha},{\alpha},{\alpha}$-trifluoro-2, 6-dinitro-N, N-dipropylp-toluidine) and nitrofen (2,4-dichlorophenyl-p-nitrophenylether). Napropamide, diphenamide (N, N-dimethyl-2, 2-diphenylacetamide) and alachlor were safe for red pepper (Capsicum annuum L.), eggplant (Solanum melongena L. and tomato (Lycopersicon esculentum Mill.), while trifluralin, nitrofen and chlonitrofen (2,4,6-trichlorophenyl-4-nitrophenyl ether) could be used for water melon (Citrullus battich Forsk.), carrot (Daucus carota L.) and lettuce (Lactuca scariola L.) without crop injury. Out of nine major weed species studied, Capsella bursa-pastoris Medicus was the most resistant species to the herbicides tested. Napropamide and alachlor could not control P. hydropiper, while P. oleracea and C. album were tolerant to diphenamide :and alachlor, respectively. Urea herbicides such as methabenzthiazuron [3-(2-benzothiazolyl)-1,3-dimethylurea], linuron [3-(3, 4-dichlorophenyl~l-methoxy-i-methyl urea], and isoproturon [3-(4-isopropylphenyl) -1, 1-dimethylurea]gave a great injury to the crops studied. The weeding effect was greater for broadleaf weeds than for grasses. Isoproturon and linuron provided good selectivity for marsh mallow and carrot, respectively. In peanut, the crop injury caused by Four herbicides studied was greater when cultivated with mulching than when cultivated without mulching. With dinitroaniline herbicides the crop injury decreased as the gaseous herbicide was removed out of mulching. Alachlor gave little phytotoxicity to peanut grown under mulching condition and nitralin [4-(methylsuphonyl)-2, 6-dinitro-N, N-dipropylaniline] showed less toxicity to the peanut than pendimenthalin (3,4-dimethyl-2, 6-dinitro-N-1-ethyl propylaniline) and trifluralin.

  • PDF

Creeping Bentgrass(Agrostis palustris Huds.) Control in Kentucky Bluegrass(Poa pratensis L.) Fairways (켄터키 블루그래스 페어웨이에서 문제가 되는 크리핑 벤트그래스 방제)

  • Tae Hyun-Sook
    • Asian Journal of Turfgrass Science
    • /
    • v.19 no.2
    • /
    • pp.65-72
    • /
    • 2005
  • Creeping bentgrass (Agrostis palustris Huds.) had been the problematic weed for Kentucky bluegrass (Poa pratensis L.) fairway since it shows light green color all year. Experiment was carried out to determine the best herbicides combination to control creeping bentgrass in Kentucky bluegrass. fairway without injury. To investigate the efficacy of herbicides, five post-emergence herbicides of asulam WG ($87.6\%$), imazaquin SL ($20\%$), fenoxaprop-P-ethyl EC ($7\%$), mecoprop SL ($50\%$), triclopyr-TEA SL ($30\%$) and one pre-emergence herbicide pendimethalin EC ($31.7\%$) treated on 21 Sept. and 10 Nov. 2003. Kentucky bluegrass visual quality evaluated 30 and 50 days after application for phytotoxic effects of the herbicides. As a result, asulam WG (0.2g/$m^{2}$) and imazaquin SL (0.3ml/$m^{2}$) showed approximately $90\%$ of control in creeping bentgrass, but visual quality of Kentucky bluegrass significantly decreased from 20 to 50DAT (day after treatment). However, creeping bentgrass was acceptably controlled(over $80\%$) by fenoxaprop-P-ethyl EC (0.4ml/$m^{2}$)+triclopyr-TEA SL(0.3 ml/$m^{2}$) applied twice on 21 Sept. and 1 Oct. 2003 without serious injury on Kentucky bluegrass. Therefore, it is suggested that an application of fenoxaprop-P-ethyl EC (0.4ml/ $m^{2}$)+triclopyr-TEA SL (0.3 ml/$m^{2}$) may be more effective to control creeping bentgrass in Kentucky bluegrass with the least phytotoxicity by herbicides.

Effects of Diffusibility of Bubbling Tablet Herbicide Formulations for Paddy Rice (수도용 발포성정제 제초제의 확산성에 미치는 영향)

  • Kim, Man-Ho;Ryang, Kwang-Rok;Lee, Chang-Hyeuk;Shim, Jae-Weon;Kim, Kyung-Hyun;Yoon, Cheol-Su;You, Yong-Man;Pyon, Jong-Yeong
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.4
    • /
    • pp.401-410
    • /
    • 2005
  • A series of studies involving formulation processes, bubbling activity test, diffusibility test and biological efficacy test was undertaken to develop Jumbo herbicide formulations in paddy rice field. Gas evolution speed from the tablets prepared by different organic acids was in the order of oxalic acid, malonic acid, citric acid, and tartaric acid. The total volume of evolved gas from the tablet and diffusibility of the active ingredient in the submerged water were increased with increase of water temperature; the volume from 1 g of tablet at 10, 15, 25 and $30^{\circ}C$ for 5 minutes after immersion into water was 20, 25, 28, 45, 57 mL, respectively. The concentration of halosulfuron-methyl and pyriminobac-methyl in submerged water at 5, 15, 20 and $30^{\circ}C$ at the 2.4 m distance from the applied spot of the tablet was 20, 48, 85, and 97% of the concentration of treated spot, respectively. The evolved gas volume from the tablets was not affected by pH of submerged water. The concentration of halosulfuron-methyl in different sizes of submerged water within 24 hours after treatment of the tablet was maintained 0.16 ppm, which is ideal concentration at standard dosage regardless of the submerged water area. The concentration of pyriminobac-methyl was also uniformly dispersed in the water within 24 hours after applying it into the submerged water. The wind velocity of 5 m $sec^{-1}$ on concentration distribution of halosulfuron-methyl and pyriminobac-methyl in the submerged water 24 hours after treatment was not influenced; an equal concentration in the up the wind and down the wind from the applied spot was maintained. Spot treatments of one tablet formulations(5 g) including 4 times higher dosage at 4 different spots resulted in even concentration distribution of active ingredient in the water 24 hours after applying it into the submerged water.

Effects of Spray Methods and Ammonium Sulfate and Potassium Chloride on Enhancing Phytotoxicity of Glyphosate (제초제(除草劑)의 살초효과(殺草效果) 증진(增進)을 위한 살포방법(撒布方法)과 황산암모늄 및 염화칼리의 첨가처리효과(添加處理效果))

  • Pyon, Jong-Yeong;Kim, Young-Rae
    • Korean Journal of Weed Science
    • /
    • v.3 no.2
    • /
    • pp.190-198
    • /
    • 1983
  • To examine the possibility of enhancing activity of foliar applied herbicides by spray methods and additives, field experiments were conducted to evaluate the effects of surfactant, spray volume, and additions of ammonium sulfate or potassium chloride to glyphosate on toxicity to Digitaria sanguinalis or Artemisia princeps. Glyphosate toxicity increased as spray volume was decreased from 120 1/10a to 40 and 80 1/10a. Additions of surfactant in the spray solution increased toxicity of glyphosate to D. sanguinalis and usually more pronounced effect was obtained at glyphosate 30.5g a.i./10a. Additions of 1 and 5% (w/v) ammonium sulfate to glyphosate increased toxicity to A. princeps at glyphosate 30.5 and 61.5g a.i./10a. 10% ammonium slufate, however, had no effect or were antagonistic. Additions of potassium chloride at 1,2 and 3% (w/v) were also very effective to increase herbicidal activity to A. princeps at glyphosate at 30.5 and 61.0g a.i/10a. These results suggest that the practices for enhancement of herbicidal activity by improvement of spray method and additions of ammonium sulfate or potassium chloride to glyphosate can be employed to use lower herbicide levels while giving the same degree of weed control in orchards and non-crop lands.

  • PDF

Application Rate Modification of Paddy Herbicide Quinclorac Depending on Different Cultural Patterns (벼 작부양식(作付樣式)의 차이(差異)에 따른 제초제(除草劑) QUINCLORAC 의 선택활성(選擇活性) 변동(變動))

  • Guh, J.O.;Im, W.H.;Han, S.U.;Kuk, Y.I.
    • Korean Journal of Weed Science
    • /
    • v.12 no.2
    • /
    • pp.124-131
    • /
    • 1992
  • Not only reducing the carry-over effects of quinclorac [3, 7-dichloro-8-quinoline carboxylic acid] used in paddy field to some following vegetable crops but also rationalizing agro-ecology conservation and farm economy, the reducing feasibility of application rates by various cropping patterns and application timing after rice seeding and transplanting. Four cropping patterns namely dry direct seeding(DDS), flooded direct seed(FDS), transplanting of 8 days old early seedlings(EST) and 25 days old machinery seedling(MST) were experimented with 7 application timings as 0, 5, 10, 15, 20, 25, 30 days after seeding/transplanting and 9 levels of application rates as 0, 75, 150, 225, 300, 375, 450, 525, and 600g ai/ha of the chemical, respectively. Within the maximum permitted limit of rice phytotoxicity, the minimum application rate of quinclorac to complete control of Echinochloa crus-galli as influenced by various cropping patterns with application timing could be evaluated as follows : A. Dry direct seeding : The minimized application rate at application timing upto 10 days after seeding (DAS) was counted 150g ai/ha, and delaying upto 15-30 DAS, the rates were increased upto 225-525g ai/ha. B. Flooded direct seeding and transplanting : The application rates were minimized 75g ai/ha at application timing upto 10 days after seeding/transplanting(DAS/T), 150g ai/haupto 15 DAS/T, and 225g ai/ha at later than 20 DAS/T, respectively.

  • PDF