• Title/Summary/Keyword: hepatic lipid peroxide

Search Result 166, Processing Time 0.024 seconds

Effect of Codonopsis lanceolata Water Extract on the Activities of Antioxidative Enzymes in Carbon Tetrachloride Treated Rats (더덕 물추출물이 사염화탄소를 투여한 흰쥐의 항산화계 효소활성도에 미치는 영향)

  • 조수열;한은경
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.6
    • /
    • pp.1181-1186
    • /
    • 1997
  • This study was performed to investigate the effects of Codonopsis lanceolata extract on the activities of antioxidative enzymes in carbon tetrachloride treated rats. Male Sprague-Dawley rats were fed until they reached about 110$\pm$10g body weight. Thereafter they were divided into normal group(N), carbon tetrachloride treated group(T), carbon tetrachloride and Codonopsis lanceolata water extract treated group(TW). Normal group were fed standard diet and carbon tetrachloride treated group were fed carbon tetrachloride once a week at the level of 0.12ml/100g body weight. Carbon tetrachloride and Codonopsis lanceolata water extract treated group were fed carbon tetrachloride once a week at the level of 0.12ml/100g body weight and Codonopsis lanceolata water extract at the level of 0.1ml/100g body weight once a day. The rats were sacrificed after 6weeks of feeding period. Content of hepatic cytochrome P-450 diminished by carbon tetrachloride was significantly increased by Codonopsis lanceolata water extract. Significant decrease in hepatic xanthine oxidase activity was found in rats treated with Codonopsis lanceolata water extract. The activity of superoxide dismutase was decreased by carbon tetrachloride, but it was significantly increased by Codonopsis lanceolata water exract. The activity of glutathione peroxidase increased by carbon tetrachloride was significantly decreased by Codonopsis lanceolata water extract. The activities of catalase and glutathione S-transferase were significantly influenced by Codonopsis lanceolata water extract. Contents of glutathione and lipid peroxide were increased by carbon tetrachloride, but they were significantly diminished by Codonopsis lanceolata water extract.

  • PDF

6-O-Galloylsalidroside, an Active Ingredient from Acer tegmentosum, Ameliorates Alcoholic Steatosis and Liver Injury in a Mouse Model of Chronic Ethanol Consumption

  • Kim, Young Han;Woo, Dong-Cheol;Ra, Moonjin;Jung, Sangmi;Kim, Ki Hyun;Lee, Yongjun
    • Natural Product Sciences
    • /
    • v.27 no.3
    • /
    • pp.201-207
    • /
    • 2021
  • We have previously reported that Acer tegmentosum extract, which is traditionally used in Korea to reduce alcohol-related liver injury, suppresses liver inflammation caused by excessive alcohol consumption and might improve metabolism. The active ingredient, 6-O-galloylsalidroside (GAL), was isolated from A. tegmentosum, and we hypothesized that GAL could provide desirable pharmacological benefits by ameliorating physiological conditions caused by alcohol abuse. Therefore, this study focused on whether GAL could ameliorate alcoholic fat accumulation and repair liver injury in mice. During chronic alcohol consumption plus binge feeding in mice, GAL was administered orally once per day for 11 days. Intrahepatic lipid accumulation was measured in vivo using a noninvasive method, 1H magnetic resonance imaging, and confirmed by staining with hematoxylin and eosin and Oil Red O. The serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured using a Konelab system, and the triglyceride content was measured in liver homogenates using an enzymatic peroxide assay. The results suggested that GAL alleviated alcohol-induced steatosis,e as indicated by decreased hepatic and serum triglyceride levels in ethanol-fed mice. GAL treatment also correlated with a decrease in the Cd36 mRNA expression, thus potentially inhibiting the development of alcoholic steatosis via the hepatic de novo lipogenesis pathway. Furthermore, treatment with GAL inhibited the expression of cytochrome P450 2E1 and attenuated hepatocellular damage, as reflected by a reduction in ALT and AST levels. These findings suggest that GAL extracted from A. tegmentosum has the potential to serve as a bioactive agent for the treatment of alcoholic fatty liver and liver damage.

Effect of Dietary Selenium of Metallothionein Synthesis and Antioxidative Detoxificantion Mechanism in Cadmium Administered Rats (Cadmium 투여 흰쥐에 있어서 Metallothionein 합성과 항산화적 해독기구에 미치는 식이 Selenium의 영향)

  • 이순재
    • Journal of Nutrition and Health
    • /
    • v.26 no.3
    • /
    • pp.286-298
    • /
    • 1993
  • In order to investigate the effect of selenium (Se) on the liver damage, metallothionein synthesis and hepatic antioxidative detoxification system in cadmium(Cd) administered rats. Sprague-Dawley male rats(60\\5g) were divided into two diet groups, depending on with (CdS groups) or without (Cd groups) 0.5ppm Se supplementation and fed experimental diets ad libidum for 4 weeks. And then each group was again subdivided into five groups, depending on injection number of Cd, i.e., 0, 1, 2, 3, and 4 times of 2.5mg Cd/kg of body wt once a day. Hemoglobin concentration, hematocrit values, superoxide dismutase, glutathione peroxidase and glutathione S-transferase activite were decreased progressively with increasing number of Cd injection, but increased by the supplementation of Se. The reduced form of glutathione (GSH) contents in blood and liver and vitamin E content were decreased and oxidized form (GSSG) increased in Cd groups, but these of Se supplemented groups were not very different from controls. Cd reduced liver vitamin E content which was not restored by Se supplementation. Liver lipid peroxide values were elevated with increasing doses of Cd, but Se supplementation reduced these elevated levels. Accumulation of metallothionein in liver and kidney was increased with increasing number of Cd injection, but Se did not affect on them. Histological examination revealed that lysosomes were significantly increased and mitochondria and Golgi apparatus were enlarged by Cd, however, these changes were reduced by Se. It was concluded that Se administration promoted antioxidative detoxification and alleviated peroxidative damage in rat liver by Cd.

  • PDF

Effects of Mulberry Leaf Tea Fermented by Monascus pilosus on Body Weight and Hepatic Antioxidant Enzyme Activities in Mouse Fed High-Fat Diet (Monascus pilosus 발효 뽕잎차가 고지방 식이 마우스의 체중과 간 조직 항산화계 효소 활성에 미치는 영향)

  • Lee, Sang-Il;Lee, Ye-Kyung;Lee, In-Ae;Choi, Jongkeun;Kim, Soon-Dong;Suh, Joo-Won
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.1
    • /
    • pp.66-77
    • /
    • 2013
  • In this study, we investigated the preventive effects of the mulberry leaf tea fermented by Monascus pilosus on high fat-induced obesity, hyperlipidemia, and fatty liver in mice. Non-fermented mulberry leaf tea powder (UM) and fermented mulberry leaf tea powder (FM) were supplemented with high-fat diet at 2% (wt/wt) dosage for 8 weeks. Both UM and FM lowered body weight gain, feed efficiency ratio, epididymal fat, serum triglyceride, total cholesterol and LDL-cholesterol increased markedly with high fat diet (HC) in mice. FM showed more significant effects when it was compared with UM. In addition, Hepatic lipid peroxides and xanthin oxidase activities of the UM and FM were significantly lower than those of HC, despite the lack of a big difference in the amount of hepatic GSH. Activities of ROS scavenging enzymes and serum alanine aminotransferase activity were also examined as a parameter of hepatic damage. The UM and FM groups showed a recovery to NC group from significant changes induced by HC. Finally, histopathological analyses of liver samples revealed a decrease of lipid accumulation in hepatocytes in the UM and FM groups. These results suggest that UM and especially FM can reduce the development of obesity, hyperlipidemia and fatty liver.

Effect of Fermented Cucumber Beverage on Ethanol Metabolism and Antioxidant Activity in Ethanol-treated Rats (오이 발효음료가 만성적으로 에탄올을 급여한 흰쥐의 에탄올 대사와 항산화방어계에 미치는 영향)

  • Lee, Hae-In;Seo, Kwon-Il;Lee, Jin;Lee, Jeom-Sook;Hong, Sung-Min;Lee, Ju-Hye;Kim, Myung-Joo;Lee, Mi-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.8
    • /
    • pp.1099-1106
    • /
    • 2011
  • Cucumber fermentation has been used as a means of preservation. This study was performed to investigate the effects of fermented cucumber beverage (CF) containing beneficial materials for an ethanol hangover based on Hovenia dulcis (SKM) on ethanol-induced hepatotoxicity. Male Sprague-Dawley rats were randomly divided into three groups: ethanol control, ethanol plus SKM, and ethanol plus CF+SKM. SKM or CF+SKM was orally administered at a dose of 7 mL/kg body weight once per day for 5 weeks. Control rats were given an equal amount of water. CF+SKM significantly lowered plasma ethanol levels, whereas SKM tended to decrease the levels compared to the control. Both SKM and CF+SKM significantly lowered the plasma acetaldehyde levels and serum transaminase activities compared to those in the control. SKM and CF+SKM did not affect hepatic alcohol dehydrogenase activity; however, it significantly inhibited cytochrome P450 2E1 (CYP2E1) activity. Hepatic aldehyde dehydrogenase (ALDH) activity was significantly higher in the SKM and CF+SKM groups than that in the control group. Plasma acetaldehyde concentration was significantly correlated with hepatic CYP2E1 (r=0.566, p<0.01) activity and ALDH (r=-0.564, p<0.01) activity. Hepatic superoxide dismutase and catalase activities as well as glutathione content increased with the SKM and CF+SKM administration, whereas lipid peroxide content decreased significantly. Furthermore, SKM and CF+SKM lowered plasma and hepatic lipid content and lipid droplets compared to those in the control group. These results indicate that SKM and CF+SKM exhibit hepatoprotective properties partly by inhibiting CYP2E1 activity, enhancing ALDH activity and stimulating the antioxidant defense systems in ethanol-treated rats.

Hepatotoxicity in Rats Treated with Dimethylformamide or Toluene or Both

  • Kim, Ki-Woong;Chung, Yong Hyun
    • Toxicological Research
    • /
    • v.29 no.3
    • /
    • pp.187-193
    • /
    • 2013
  • The effects of toluene in dimethylformamide (DMF)-induced hepatotoxicity were investigated with respect to the induction of cytochrome P-450 (CYP) and the activities of related enzymes. The rats were treated intraperitoneally with the organic solvents in olive oil (Single treatment groups: 450 [D1], 900 [D2], 1,800 [D3] mg DMF, and 346 mg toluene [T] per kg of body weight; Combined treatment groups: D1+T, D2+T, and D3+T) once a day for three days, while the control group received just the olive oil. Each group consisted of 4 rats. The activities of the xenobiotic metabolic enzymes and the hepatic morphology were assessed. The immunoblots indicated that the expression of CYP2E1 was considerably enhanced depending on the dosage of DMF and the CYP2E1 blot densities were significantly increased after treatment with both DMF and toluene, compared to treatment with DMF alone. The activities of glutathione-S-transferase and glutathione peroxidase were either decreased or remained unaltered after treatment with DMF and toluene, whereas the lipid peroxide levels were increased with increasing dosage of DMF and toluene. The liver tissue in the D3 group (1,800 mg/kg of DMF) showed signs of microvacuolation in the central vein region and a large necrotic zone around the central vein, in rats treated with both DMF (1,800 mg/kg) and toluene (D3T). These results suggest that the expression of CYP2E1 is induced by DMF and enhanced by toluene. These changes may have facilitated the accelerated formation of N-methylformamide (NMF) from toluene, and the generated NMF may directly induce liver damage.

Protective Effect of Ethanol Extract of Artemisiae vulgaris L. on hepatic injury Induced by Carbon tetrachloride In Rat. (애엽 에탄올 추출물이 사염화탄소로 유발된 흰쥐의 간 손상 보호효과)

  • Kim, Ok-Kyung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.1420-1426
    • /
    • 2019
  • This study was done to investigate the protective effects of ethanol extract Artemisiae vulgaris L(Av) on carbon tetrachloride(CCl4)intoxicated rats. Male sprague Dawley rats(200~210g)was used. experimental groups were divided into normal group, CCl4-control group, and ethanol extract CCl4-treated group. CCl4-treated groups were injected with CCl4 0.6mg/kg.b.w(i.p). The activities of Alanine aminotransferase(ALT), Aspartate aminotransferase(AST), Alkaline phosphatase(ALP), Glutamyl transpeptidase(γ-GT), Lactate dehydrogenase(LDH) in extract pretrated group was significantly decreased(p<0.05) compared to the CCl4-control group. The contents of triglyceride, cholesterol and lipid peroxide were significantly decreased(p<0.05). whereas the contents of HDL-cholesterol and glutathione(GSH) were significantly increased(p<0.05). These results suggest that extract of Artemisiae vulgaris L(Av) has hepatoprotective effect in the CCl4-intoxicated rats.

Hepatoprotective Effect of the Methanol Fraction of Chinese Cabbage on Liver Injury in Rats Treated by bromobenzene (Chinese Cabbage 잎과 뿌리가 메탄올층의 Bromobenzene 간손상에 대한 보호효과)

  • Lee Hyo Jung;Kim Kwan Hyun;Lee Eun Ok;Choi Jong Won;Kang Kyung Sun;Yoon Byong Su;Kim Sung Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.5
    • /
    • pp.1177-1181
    • /
    • 2003
  • Chinese cabbage is a vegetable of Cruciferous family. It was usually consumed as Kimchi. It was known to have amount of vitamin c. Recently the trend for the development of functional food combined with oriental herbs. For this aim the study was performed to evaluate the hepatoprotective effect via antioxidant activity of leaf and root of Sanchon Chinese cabbage(Brassica campetris L.) comparatively. The methanol extracts of Chinese cabbage were tested for investigating the effects on the formation of lipid peroxide and the activities of free radical generating enzyme in vitro in bromobenzene-treated rats. The methanol extracts of chinese cabbage reduced bromobenzene-induced hepatic lipid peroxidation and inhibited the activity of xanthine oxidase. The methanol extracts of chinese cabbage did not activate amionopyrine N-demethylase, aniline hydroxylase and glutathione S-transferase. Epoxide hydrolase activity was decreased by bromobenzene, which was restored by pretreatment of the methanol extracts of chinese cabbage. The results suggest that the methanol extracts of Chinese cabbage is reduced by enhancing the activity of epoxide hydrolase.

Antioxidative and Anti-aging Effects of Sancho (Zanthoxylum schinifolium) Extract in Rats Fed High Fat Diet

  • Jang Mi-Jin;Woo Mi-Hee;Rhee Soon-Jae;Cho Sung-Hee
    • Nutritional Sciences
    • /
    • v.9 no.3
    • /
    • pp.159-166
    • /
    • 2006
  • This study was performed to investigate antioxidative and anti-aging action of extracts from Sancho (Zanthoxylum schinifolium) leaves. Two extracts were obtained by 80% methanol extraction followed by subsequent fractionation with methylene chloride (MC) and n-butanol (B) and fed at one or three levels to rats on normal level (5%) of fat (control) and high fat(20%) in diets. Male Sprague-Dawley rats weighing about 100 g were divided into ten groups such as control diet group(C), control diet+0.50%B group (CB), control diet+0.50%MC group (CMC), high-fat diet group (HF), high-fat diet+0.25%B group (HBL), high-fat diet+0.50%B group (HBM), high-fat diet+0.75%B group (HBH), high-fat diet+0.25%MC group (HMCL), high-fat diet+0.50%MC group (HMCM) and high-fat diet+ 0.75%MC group (HMCH) and fed each diet for four weeks. The effects of the extracts on antioxidant enzyme activities and indices of lipid peroxidation and aging were seen only in high fat diet groups. Hepatic superoxide dismutase and aryleaterase activities were not changed by Sancho extracts. But glutathione peroxidase, catalase and paraxonase activities were significantly restored by both MC and B at the level of 0.75% lipid peroxide which was increased by high fat diet was significantly reduced by B and MC at the level of 0.25% and over. Lipofuscin fluorescence and cabonyl value were increased by high fat diet were reduced by B and MC at the level of 0.5% and over. It is concluded that the Sancho extracts can be utilized as functional ingredients of health foods for reducing oxidative stress.

Effects of Aralia elata Water Extracts on Activities of Hepatic Oxygen Free Radical Generating and Scavenging Enzymes in Streptozotocin-Induced Diabetic Rats (두릅열수추출물이 당뇨유발 흰쥐의 간조직 중 유해 활성산소 대사효소계 활성에 미치는 영향)

  • 김명주;조수열;이미경;신경희
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.4
    • /
    • pp.653-658
    • /
    • 2004
  • Oxidative stress is currently suggested as a mechanism underyling diabetes. Accordingly, the present study was designed to evaluate the effect of Aralia elate water extracts (AEW) on activities of hepatic oxygen free radical generating and scavenging enzymes in streptozotocin (STZ)-induced diabetic rats. Male Wistar rats divided into nondiabetic group, diabetic group, and diabetic-AEW supplemented group. The extract was supplemented in 1.14% of raw Aralia elata/kg diet for 7 weeks. Diabetes was induced by injecting STZ (55 mg/kg BW, ip) once 2 weeks before sacrifying. The hepatic cytochrome P-450 content, xanthine oxidase and aminopyrine N-demethylase activities were significantly lowered in the diabetic group compared to the nondiabetic group. Whereas, the activities of aniline hydroxylase and oxygen free radical scavenging enzymes, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase and glutathione S-transferase, were significantly higher in the diabetic group than in the nondiabetic group. However, the supplementation of AEW normalized these enzyme activities in STZ-induced diabetic rats. When the AEW was supplemented with the diabetic rats, hepatic glutathione content was markedly elevated as well as lipid peroxide level was significantly lowered compared to those of the diabetic group. Thus, these results suggested that AEW supplement enhanced the activities of oxygen species metabolizing enzymes in STZ-induced diabetic rats.