• Title/Summary/Keyword: hematopoietic stem cells

Search Result 167, Processing Time 0.025 seconds

Identification of Cell Type-Specific Effects of DNMT3A Mutations on Relapse in Acute Myeloid Leukemia

  • Seo-Gyeong Bae;Hyeoung-Joon Kim;Mi Yeon Kim;Dennis Dong Hwan Kim;So-I Shin;Jae-Sook Ahn;Jihwan Park
    • Molecules and Cells
    • /
    • v.46 no.10
    • /
    • pp.611-626
    • /
    • 2023
  • Acute myeloid leukemia (AML) is a heterogeneous disease caused by distinctive mutations in individual patients; therefore, each patient may display different cell-type compositions. Although most patients with AML achieve complete remission (CR) through intensive chemotherapy, the likelihood of relapse remains high. Several studies have attempted to characterize the genetic and cellular heterogeneity of AML; however, our understanding of the cellular heterogeneity of AML remains limited. In this study, we performed single-cell RNA sequencing (scRNAseq) of bone marrow-derived mononuclear cells obtained from same patients at different AML stages (diagnosis, CR, and relapse). We found that hematopoietic stem cells (HSCs) at diagnosis were abnormal compared to normal HSCs. By improving the detection of the DNMT3A R882 mutation with targeted scRNAseq, we identified that DNMT3A-mutant cells that mainly remained were granulocyte-monocyte progenitors (GMPs) or lymphoid-primed multipotential progenitors (LMPPs) from CR to relapse and that DNMT3A-mutant cells have gene signatures related to AML and leukemic cells. Copy number variation analysis at the single-cell level indicated that the cell type that possesses DNMT3A mutations is an important factor in AML relapse and that GMP and LMPP cells can affect relapse in patients with AML. This study advances our understanding of the role of DNMT3A in AML relapse and our approach can be applied to predict treatment outcomes.

Effects of Antioxidants Treatment on the Cryopreservation of Human Hematopoietic Stem Cells (인간 조혈모 줄기세포의 냉동보존에 미치는 항산화제의 영향)

  • Kim, Eung-Bae;Hong, Soon-Gab;Do, Byung-Rok;Kim, Kyung-Suk;Lee, Joon-Yeong
    • Development and Reproduction
    • /
    • v.12 no.1
    • /
    • pp.67-76
    • /
    • 2008
  • Oxidative damage resulted from reactive oxygen species (ROS) is one of the main causes for the decrease of the viability during in vitro culture and cryopreservation process. This experiment was performed to determine the effects of antioxidants on the human hematopoietic stem cell (HSC) during cryopreservation procedure. HSCs cultured in vitro with or without antioxidants were frozen and then examined for stem cell potential after thawing. The cell viability of thawed HSC was increased in $\alpha$-tocopherol and ascorbic acid treatment group compared to control group ($62.7{\pm}8.0%$) and it was higher in 150 uM $\alpha$-tocopherol treatment group ($70.5{\pm}7.0%$). No significant difference was observed in the membrane integrity in all groups. In auto-differentiation rate, no significant difference was appeared in all groups, but was lower in 150 uM $\alpha$-tocopherol ($7.3{\pm}2.6%$) compared to control group ($10.1{\pm}1.6%$). These results demonstrate that treatment of antioxidants improves the efficiency of cryopreservation for HSC and $\alpha$-tocopherol may be considered effective antioxidant for the protective effect on HSC.

  • PDF

Inhibition of Graft Versus Host Disease Using CD4+CD25+ T Cells Induced with Interleukin-2 in Mismatched Allogeneic Murine Hematopoietic Stem Cell Transplantation (주조직적합항원이 불일치하는 마우스 동종 조혈모세포이식에서 IL-2로 유도된 CD4+CD25+ T세포를 이용한 이식편대숙주병의 억제)

  • Hyun, Jae Ho;Jeong, Dae Chul;Chung, Nak Gyun;Park, Soo Jeong;Min, Woo Sung;Kim, Tai Gyu;Choi, Byung Ock;Kim, Won Il;Han, Chi Wha;Kim, Hack Ki
    • IMMUNE NETWORK
    • /
    • v.3 no.4
    • /
    • pp.287-294
    • /
    • 2003
  • Background: In kidney transplantation, donor specific transfusion may induce tolerance as a result of some immune regulatory cells against the graft. In organ transplantation, the immune state arises from a relationship between the immunocompromised graft and the immunocompetent host. However, a reverse immunological situation exists between the graft and the host in hematopoietic stem cell transplantation (HSCT). In addition, early IL-2 injections after an allogeneic murine HSCT have been shown to prevent lethal graft versus host disease (GVHD) due to CD4+ cells. We investigated the induction of the regulatory CD4+CD25+ cells after a transfusion of irradiated recipient cells with IL-2 into a donor. Methods: The splenocytes (SP) were obtained from 6 week-old BALB/c mice ($H-2^d$) and irradiated as a single cell suspension. The donor mice (C3H/He, $H-2^k$) received $5{\times}10^6$ irradiated SP, and 5,000 IU IL-2 injected intraperitoneally on the day prior to HSCT. The CD4+CD25+ cell populations in SP treated C3H/He were analyzed. In order to determine the in vivo effect of CD4+CD25+ cells, the lethally irradiated BALB/c were transplanted with $1{\times}10^7$ donor BM and $5{\times}10^6$ CD4+CD25+ cells. The other recipient mice received either $1{\times}10^7$ donor BM with $5{\times}10^6$ CD4+ CD25- cells or the untreated SP. The survival and GVHD was assessed daily by a clinical scoring system. Results: In the MLR assay, BALB/c SP was used as a stimulator with C3H/He SP, as a responder, with or without treatment. The inhibition of proliferation was $30.0{\pm}13%$ compared to the control. In addition, the MLR with either the CD4+CD25+ or CD4+CD25- cells, which were isolated by MidiMacs, from the C3H/He SP treated with the recipient SP and IL-2 was evaluated. The donor SP treated with the recipient cells and IL-2 contained more CD4+CD25+ cells ($5.4{\pm}1.5%$) than the untreated mice SP ($1.4{\pm}0.3%$)(P<0.01). There was a profound inhibition in the CD4+CD25+ cells ($61.1{\pm}6.1%$), but a marked proliferation in the CD4+CD25- cells ($129.8{\pm}65.2%$). Mice in the CD4+CD25+ group showed low GVHD scores and a slow progression from the post-HSCT day 4 to day 9, but those in the control and CD4+CD25- groups had a high score and rapid progression (P<0.001). The probability of survival was 83.3% in the CD4+CD25+ group until post-HSC day 35 and all mice in the control and CD4+CD25- groups died on post-HSCT day 8 or 9 (P=0.0105). Conclusion: Donor graft engineering with irradiated recipient SP and IL-2 (recipient specific transfusion) can induce abundant regulatory CD4+CD25+ cells to prevent GVHD.

Ameliorating Effects of Nokyongdaebo-tang on Experimental Subacute Hemorrhagic Anemia in Rats (녹용대보탕 열수 추출물의 실험적으로 유발된 랫트 아급성 출혈성 빈혈에 대한 효과)

  • Kim, Jung-Ah;Kim, Dong-Chul
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.30 no.3
    • /
    • pp.1-19
    • /
    • 2017
  • Objectives: The object of this study is to observe the possible ameliorating effects of Nokyongdaebo-tang (NYDBT) on the experimental subacute hemorrhagic anemia (SHA) in rats. Methods: In the present study, SHA in rats was induced by exsanguinations from orbital plexus, and ameliorating effects of NYDBT was observed based on the changes of body and hematopoietic organ (spleen, liver and femur) weights, red blood cell (RBC) related hematological values, smear cytology, histopathological changes and immunohistochemistrical analysis of hematopoietic stem cells in the femur bone marrow, liver and spleen. In addition, the gastrointestinal motility and the surface mucosa thicknesses of remnant fecal pellets in the colon lumen, mucosa thicknesses and the mucous producing cell numbers in the colonic mucosa were analyzed to observe the digestive disorders, especially on the constipation, the major discomfort problems in iron supplement. Results: SHA related abnormal anemic signs were markedly and dose-dependently inhibited by oral administration of NYDBT 500, 250 and 125 mg/kg in a condition of this experiment. In addition, no meaningful changes on the gastrointestinal motilities and mucous component on the colon and remnant feces were noticed in all three different dosages of NYDBT treated rats as compared with intact vehicle and SHA control rats in this study. Conclusions: It, therefore, is expected that NYDBT will be promising as a novel alternative hematopoietic and therapeutic agent for anemia.

The Activity of Protein Kinases on the Endothelin-1-induced Muscle Contraction and the relationship of Physical Therapy (Endothelin-1-유도 근수축에 관여하는 부활효소의 활성과 물리치료의 상관성)

  • Kim, Mi-Sun;Kim, Il-Hyun;Hwang, Byong-Yong;Kim, Jung-Hwan
    • The Journal of Korean Physical Therapy
    • /
    • v.20 no.3
    • /
    • pp.53-59
    • /
    • 2008
  • Purpose: The non-receptor-type protein tyrosine kinase Syk (636 amino acids, 72 kDa) is ubiquitously expressed in hematopoietic stem cells and has been widely studied as a regulator and effector of B cell receptor signaling that occurs in processes such as differentiation, proliferation and apoptosis. However, the mechanism relating Syk and p38 mitogen-activated protein kinases (p38MAPK) by endothelin-1 (ET-1, 21 amino acids) stimulation in muscle cells, especially in the volume-dependent hypertensive state, remains unclear. Methods: In this study, we investigated the relationship between Syk and p38MAPK for isometric contraction and enzymatic activity by ET-1 from rat aortic smooth muscle cells and aldosterone-analogue deoxycorticosterone acetate (DOCA) hypertensive state rats (ADHR). Results: The systolic blood pressure was significantly increased in ADHR than in a control group of animals. ET-1 induced isometric contraction and phosphorylation of p38MAPK, which was increased in muscle strips from ADHR. Increased vasoconstriction and phosphorylation of p38MAPK induced by treatment with 30 nM ET-1 were inhibited by the use of 10${\mu}M$ SB203580, an inhibitor of p38MAPK from ADHR. Furthermore, ET-1 induced isometric contraction and phosphorylation of Syk and p38MAPK, which were increased in the aortic smooth muscle cells. Increased tension and phosphorylation of Syk and p38MAPK induced by ET-1 were inhibited by SB203580 from rat aortic smooth muscle cells. Conclusion: These results, suggest that the Syk activity affects ET-1-induced contraction through p38MAPK in smooth muscle cells and that the same pathway directly or indirectly is associated with volume dependent hypertension. The findings suggest the need to develop cardiovascular disease-specialized physical therapy.

  • PDF

Effects of Pre-conditioning dose on the Immune Kinetics and Cytokine Production in the Leukocytes Infiltrating GVHD Tissues after MHC-matched Transplantation

  • Choi, Jung-Hwa;Yoon, Hye-Won;Min, Chang-Ki;Choi, Eun-Young
    • IMMUNE NETWORK
    • /
    • v.11 no.1
    • /
    • pp.68-78
    • /
    • 2011
  • Background: Graft-versus-host disease (GVHD) is a huddle for success of hematopoietic stem cell transplantation. In this study, effects of irradiation dose on immune kinetics of GVHD were investigated using B6 ${\rightarrow}$ BALB.B system, a mouse model for GVHD after MHC-matched allogeneic transplantation. Methods: BALB.B mice were transplanted with bone marrow and spleen cells from C57BL/6 mice after irradiation with different doses. Leukocytes residing in the peripheral blood and target organs were collected periodically from the GVHD hosts for analysis of chimerism formation and immune kinetics along the GVHD development via flow cytometry. Myeloid cells were tested for production of IL-17 via flow cytometry. Results: Pre-conditioning of BALB.B hosts with 900 cGy and 400 cGy resulted in different chimerism of leukocytes from the blood and affected survival of GVHD hosts. Profiles of leukocytes infiltrating GVHD target organs, rather than profiles of peripheral blood leukocytes (PBLs), were significantly influenced by irradiation dose. Proportions of IL-17 producing cells in the infiltrating $Gr-1^+$ or $Mac-1^+$ cells were higher in the GVHD hosts with high does irradiation than those with low dose irradiation. Conclusion: Pre-conditioning dose affected tissue infiltration of leukocytes and cytokine production by myeloid cells in the target organs.

Cellular Mechanism of Newly Synthesized Indoledione Derivative-induced Immunological Death of Tumor Cell

  • Oh, Su-Jin;Ryu, Chung-Kyu;Baek, So-Young;Lee, Hyun-Ah
    • IMMUNE NETWORK
    • /
    • v.11 no.6
    • /
    • pp.383-389
    • /
    • 2011
  • Background: EY-6 is one of the newly synthesized indoledione derivatives to induce tumor cell-specific cell death. In this study, we investigated the mechanism of immunological death induced by EY-6 at mouse colon cancer cell as well as at the normal immune cell represented by dendritic cell. Methods: C57BL/6 mouse syngeneic colon cancer cell MC38 was treated with EY-6, and analyzed by MTT for viability test, flow cytometry for confirming surface expressing molecules and ELISA for detection of cytokine secretion. Normal myeloid-dendritic cell (DC) was ex vivo cultured from bone marrow hematopoietic stem cells of C57BL/6 mice with GM-CSF and IL-4 to analyze the DC uptake of dead tumor cells and to observe the effect of EY-6 on the normal DC. Results: EY-6 killed the MC38 tumor cells in a dose dependent manner (25, 50 and $100{\mu}M$) with carleticulin induction. And EY-6 induced the secretion of IFN-${\gamma}$ but not of TNF-${\alpha}$ from the MC38 tumor cells. EY-6 did not kill the ex-vivo cultured DCs at the dose killing tumor cells and did slightly but not significantly induced the DC maturation. The OVA-specific cross-presentation ability of DC was not induced by chemical treatment (both MHC II and MHC I-restricted antigen presentation). Conclusion: Data indicate that the EY-6 induced tumor cell specific and immunological cell death by modulation of tumor cell phenotype and cytokine secretion favoring induction of specific immunity eliminating tumor cells.

Factors affecting hematologic recovery and infection in high-dose chemotherapy and autologous stem cell transplantation in patients with high-risk solid tumor (소아 고형종양의 고용량 화학요법 후 자가 조혈모세포이식에서 혈액학적 회복과 감염에 영향을 주는 요인)

  • Lee, Jung Hyun;Lee, Bo Lyun;Lee, Soo Hyun;Yoo, Keon Hee;Sung, Ki Woong;Jung, Hye Lim;Cho, Eun Joo;Koo, Hong Hoe
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.10
    • /
    • pp.1079-1085
    • /
    • 2006
  • Purpose : The purpose of this study was to evaluate factors affecting hematologic recovery and infection in high-dose chemotherapy(HDCT) and autologous stem cell transplantation(ASCT) in patients with high-risk solid tumor. Methods : From January 2004 to December 2005, 72 HDCTs and ASCTs were applied to children with high-risk solid tumor at Samsung Medical Center. Medical records of these 72 HDCTs and ASCTs were retrospectively analyzed. Results : The single most powerful predictor of neutrophil and platelet recovery was the number of transplanted $CD34^+$ cells. The duration of high fever was significantly longer in young patients, in patients treated with total body irradiation and/or thiotepa, and in patients transplanted with lower $CD34^+$ cell dose(<$2{\times}10^6/kg$). However, the difference in the duration of high fever according to the number of $CD34^+$ cells was not clinically significant. Conclusion : Findings in this study suggest that HDCT and ASCT with low $CD34^+$ cell dose is clinically feasible despite delayed hematologic recovery, especially at a dose >$1{\times}10^6/kg$ per transplantation. Therefore, it is important not to defer the appropriate time for HDCT for an additional collection of hematopoietic stem cells if the number of collected $CD34^+$ cells is >$1{\times}10^6/kg$ per transplantation.

Prognostic Factors and Survival in Acute Myeloid Leukemia Cases: a Report from the Northeast of Iran

  • Allahyari, Abolghasem;Tajeri, Tarane;Sadeghi, Masoud
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.1547-1551
    • /
    • 2016
  • Background: Acute myeloid leukemia (AML) is a clonal hematopoietic disorder resulting from genetic alterations in normal hematopoietic stem cells. The aim of this study was to evaluate prognostic factors and survival of AML patients in the Northeast of Iran. Materials and Methods: This retrospective study covered 96 patients with AML referred to Emam Reza Hospital, Mashhad city, Iran, from 2009 to 2015. Age, sex, blood group, type of AML, fever, consumption of amphotericin B, cytogenetic forms and survival were analyzed. Also, WBC, hemoglobin and platelet levels were checked. Mean follow-up was 30.5 months (60.4% mortality). Survival was plotted by GraphPad Prism 5 with Log-rank test. Results: The mean age for all AML patients at diagnosis was 40.4 years (range, 17-77 years). Some 42.7% patients were aged <35 years and 40.6% were male. In all patients, 76% had fever and 50% consumed amphotericin. T(15;17)(q22;q21) had the most prevalence (37.7%) compared to other forms. Out of 92 patients, O+(30.4%) was the most common blood group and AML-M5 (28.3%) the most common subtype. There was a significant difference in survival based on WBC and consumption of amphotericin B (P<0.05). Conclusions: WBC level, fever and consumption of amphotericin B proved to be factors for survival of AML patients. The mean age for patients in Iran is lower than other areas in the World and also survival in this study was higher than in other studies.

The potential impact of low dose ionizing ${\gamma}$-radiation on immune response activity up-regulated by Ikaros in IM-9 B lymphocytes

  • Kim, Sung-Jin;Jang, Seon-A;Yang, Kwang-Hee;Kim, Ji-Young;Kim, Cha-Soon;Nam, Seon-Young;Jeong, Mee-Seon;Jin, Young-Woo
    • 대한방사선방어학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.212-213
    • /
    • 2011
  • The biological effects of low dose ionizing radiation (LDIR) remain insufficiently understood. We examined for the scientific evidence to show the biological effects of LDIR using radiation-sensitive immune cells. We found that Ikaros protein was responsed to low dose-dependent effects of gamma radiation in IM-9 B lymphocytes. Ikaros encodes zinc finger transcription factors that is important regulators of a hematopoietic stem cells (HSCs) progression to the B lymphoid lineage development, differentiation and proliferation. In this study, we observed that cell proliferation was enhanced from 10% to 20% by LDIR (0.05 Gy) in IM-9 B lymphocytes. The Ikaros protein was phosphorylated in its serine/threonine (S/T) region and decreased its DNA binding activity in the cells exposed to LDIR. We found that Ikaros phosphorylation was up-regulated by CK2/AKT pathway and the residues of ser-304 and ser-306 in Ikaros was phosphorylated by LDIR. We also observed that Ikaros protein was localized from the nucleus to the cytoplasm after LDIR and bound with Autotaxin (ENPP2, ATX) protein, stimulating proliferation, migration and survival of immune cells. In addition, we found that the lysoPLD activity of ATX was dependent on Ikaros-ATX binding activity. These results indicate that the Ikaros is an important regulator of immune activation. Therefore, we suggest that low dose ionizing radiation can be considered as a beneficial effects, stimulating the activation of immune cells.

  • PDF