• Title/Summary/Keyword: hematopoietic stem cell

Search Result 257, Processing Time 0.023 seconds

Quality of Life and Family Burden in Hemopoietic Stem Cell Transplantation Recipients (조혈모세포이식 환자의 삶의 질과 가족 부담감)

  • Bok, Ji-Na;Sohng, Kyeong-Yae;Park, Han-Jong
    • Asian Oncology Nursing
    • /
    • v.5 no.2
    • /
    • pp.136-145
    • /
    • 2005
  • Purpose: To investigate the degree and relationship of the quality of life(QOL) and family burden in hematopoietic stem cell transplantation recipients(HSCTr) at admission and discharge to isolation unit. Method: Data were obtained by interviewing from 60 HSCTr and 50 of their primary caregivers' and were analyzed by SAS program. Result: The degree of quality of life in pre and post HSCTr was significantly lower in the group who had physical discomfort compared with those who had no physical discomfort. The mean score of quality of life in pre HSCTr was significantly lower compared with in post HSCTr. Objective burden of family was higher than subjective one. Conclusion: QOL in HSCTr showed lower in the group of who had medical history, physical discomfort, no hope for cure and more than 5 weeks of length of stay. On the basis of these results, it is necessary to develop nursing intervention and to apply nursing care for improving their quality of life.

  • PDF

Clinical utilization of cord blood over human health: experience of stem cell transplantation and cell therapy using cord blood in Korea

  • Lee, Young-Ho
    • Clinical and Experimental Pediatrics
    • /
    • v.57 no.3
    • /
    • pp.110-116
    • /
    • 2014
  • Cord blood (CB) has been used as an important and ethical source for hematopoietic stem cell transplantation (SCT) as well as cell therapy by manufacturing mesenchymal stem cell, induced pleuripotential stem cell or just isolating mononuclear cell from CB. Recently, the application of cell-based therapy using CB has expanded its clinical utility, particularly, by using autologous CB in children with refractory diseases. For these purposes, CB has been stored worldwide since mid-1990. In this review, I would like to briefly present the historical development of clinical uses of CB in the fields of SCT and cell therapy, particularly to review the experiences in Korea. Furthermore, I would touch the recent banking status of CB.

Biological Response Modifiers Influence Structure Function Relationship of Hematopoietic Stem and Stromal Cells in a Mouse Model of Leukemia

  • Basu, Kaustuv;Mukherjee, Joydeep;Law, Sujata;Chaudhuri, Samaresh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2935-2941
    • /
    • 2012
  • Biological response modifiers (BRMs) can alter interactions between the immune system and cancer cells to boost, direct, or restore the body's ability to fight disease. Mice with ethylnitrosourea- (ENU) induced leukemia were here used to monitor the therapeutic efficacy of lipopolysaccaride (LPS), Bacillus Calmette Guerin (BCG) and sheep erythrocytes (SRBC). Flow cytometry based CD34+ positivity analysis, clonogenicity, proliferation and ultrastructure studies using scanning electron microscopy (SEM) of stem cells in ENU induced animals with and without BRMs treatment were performed. BRMs improved the stem-stromal relationship structurally and functionally and might have potential for use as an adjunct in human stem cell therapy.

Characterization of the KG1a Cell Line for Use in a Cell Migration Based Screening Assay

  • Bernhard O. Palsson;Karl francis;Lee, Gyun-Min
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.3
    • /
    • pp.178-184
    • /
    • 2002
  • High-throughput screening has become a popular method used to identify new “leads”for potentially therapeutic compounds. Further screening of these lead compounds is typically done with secondary assays which may utilize living, functioning cells as screening tools. A problem (or benefit) with these cell-based assays is that living cells are very sensitive to their environment. We have been interested in the process of stem cell migration and how it relates to the cellular therapy of bone marrow transplantation. In this study we describe a secondary, cell-based assay for screening the effects of various in-vitro conditions on Immature Hematopoietic Cell (IHC) migration. Our results have revealed many subtle factors, such as the cell's adhesive characteristics, or the effect of a culture's growth phase, that need to be accounted for in a screening protocol. Finally, we show that exponentially glowing KG1a cells (a human IHC cell line) were 10 times more motile than those in the lag or stationary phases. These data strongly suggest that KG1a cells secrete a chemokinetic factor during the exponential growth phase of a culture.

Dendritic Cell (DC) Vaccine in Mouse Lung Cancer Minimal Residual Model: Comparison of Monocyte-derived DC vs. Hematopoietic Stem Cell Derived-DC

  • Baek, Soyoung;Lee, Seog Jae;Kim, Myoung Joo;Lee, Hyunah
    • IMMUNE NETWORK
    • /
    • v.12 no.6
    • /
    • pp.269-276
    • /
    • 2012
  • The anti-tumor effect of monocyte-derived DC (MoDC) vaccine was studied in lung cancer model with feasible but weak Ag-specific immune response and incomplete blocking of tumor growth. To overcome this limitation, the hematopoietic stem cell-derived DC (SDC) was cultured and the anti-tumor effect of MoDC & SDC was compared in mouse lung cancer minimal residual model (MRD). Therapeutic DCs were cultured from either $CD34^+$ hematopoietic stem cells with GM-CSF, SCF and IL-4 for 14 days (SDC) or monocytes with GM-CSF and IL-4 for 7 days (MoDC). DCs were injected twice by one week interval into the peritoneum of mice that are inoculated with Lewis Lung Carcinoma cells (LLC) one day before the DC injection. Anti-tumor responses and the immune modulation were observed 3 weeks after the final DC injection. CD11c expression, IL-12 and TGF-${\beta}$ secretion were higher in SDC but CCR7 expression, IFN-${\gamma}$ and IL-10 secretion were higher in MoDC. The proportion of $CD11c^+CD8a^+$ cells was similar in both DC cultures. Although both DC reduced the tumor burden, histological anti-tumor effect and the frequencies of IFN-${\gamma}$ secreting $CD8^+$ T cells were higher in SDC treated group than in MoDC. Conclusively, although both MoDC and SDC can induce the anti-tumor immunity, SDC may be better module as anti-tumor vaccine than MoDC in mouse lung cancer.

Blockade of Vascular Endothelial Growth Factor (VEGF) Aggravates the Severity of Acute Graft-versus-host Disease (GVHD) after Experimental Allogeneic Hematopoietic Stem Cell Transplantation (allo-HSCT)

  • Kim, Ai-Ran;Lim, Ji-Young;Jeong, Dae-Chul;Park, Gyeong-Sin;Lee, Byung-Churl;Min, Chang-Ki
    • IMMUNE NETWORK
    • /
    • v.11 no.6
    • /
    • pp.368-375
    • /
    • 2011
  • Background: Recent clinical observation reported that there was a significant correlation between change in circulating vascular endothelial growth factor (VEGF) levels and the occurrence of severe acute graft-versus-host disease (GVHD) following allogeneic hematopoietic stem cell transplantation (allo-HSCT), but the action mechanisms of VEGF in GVHD have not been demonstrated. Methods: This study investigated whether or not blockade of VEGF has an effect on acute GVHD in a lethally irradiated murine allo-HSCT model of $B6\;(H-2^b)\;{\rightarrow}B6D2F1\;(H-2^{b/d})$. Syngeneic or allogeneic recipient mice were injected subcutaneously with anti-VEGF peptides, dRK6 ($50{\mu}g/dose$) or control diluent every other day for 2 weeks (total 7 doses). Results: Administration of the dRK6 peptide after allo-HSCT significantly reduced survival with greaterclinical GVHD scores and body weight loss. Allogeneic recipients injected with the dRK6 peptide exhibited significantly increased circulating levels of VEGF and expansion of donor $CD3^+$ T cells on day +7 compared to control treated animals. The donor $CD4^+$ and $CD8^+$ T-cell subsets have differential expansion caused by the dRK6 injection. The circulating VEGF levels were reduced on day +14 regardless of blockade of VEGF. Conclusion: Together these findings demonstrate that the allo-reactive responses after allo-HSCT are exaggerated by the blockade of VEGF. VEGF seems to be consumed during the progression of acute GVHD in this murine allo-HSCT model.

Drosophila blood as a model system for stress sensing mechanisms

  • Shim, Jiwon
    • BMB Reports
    • /
    • v.48 no.4
    • /
    • pp.223-228
    • /
    • 2015
  • The Drosophila lymph gland is the hematopoietic organ in which stem-like progenitors proliferate and give rise to myeloid-type blood cells. Mechanisms involved in Drosophila hematopoiesis are well established and known to be conserved in the vertebrate system. Recent studies in Drosophila lymph gland have provided novel insights into how external and internal stresses integrate into blood progenitor maintenance mechanisms and the control of blood cell fate decision. In this review, I will introduce a developmental overview of the Drosophila hematopoietic system, and recent understandings of how the system uses developmental signals not only for hematopoiesis but also as sensors for stress and environmental changes to elicit necessary blood responses. [BMB Reports 2015; 48(4): 223-228]

Exploring the Molecular and Developmental Dynamics of Endothelial Cell Differentiation

  • Yu Jung Shin;Jung Hyun Lee
    • International Journal of Stem Cells
    • /
    • v.17 no.1
    • /
    • pp.15-29
    • /
    • 2024
  • The development and differentiation of endothelial cells (ECs) are fundamental processes with significant implications for both health and disease. ECs, which are found in all organs and blood vessels, play a crucial role in facilitating nutrient and waste exchange and maintaining proper vessel function. Understanding the intricate signaling pathways involved in EC development holds great promise for enhancing vascularization, tissue engineering, and vascular regeneration. Hematopoietic stem cells originating from hemogenic ECs, give rise to diverse immune cell populations, and the interaction between ECs and immune cells is vital for maintaining vascular integrity and regulating immune responses. Dysregulation of vascular development pathways can lead to various diseases, including cancer, where tumor-specific ECs promote tumor growth through angiogenesis. Recent advancements in single-cell genomics and in vivo genetic labeling have shed light on EC development, plasticity, and heterogeneity, uncovering tissue-specific gene expression and crucial signaling pathways. This review explores the potential of ECs in various applications, presenting novel opportunities for advancing vascular medicine and treatment strategies.

Aplastic anemia (재생불량빈혈(Aplastic anemia))

  • Kim, Hack Ki
    • Clinical and Experimental Pediatrics
    • /
    • v.50 no.6
    • /
    • pp.519-523
    • /
    • 2007
  • Aplastic anemia is a rare disease, which is characterized by pancytopenia and hypocellular bone marrow without infiltration of abnormal cells or fibrosis. The incidence in Asia is higher than in the West and new cases are diagnosed at a rate of 5.1 per million pediatric populations per year in Korea. The pathophysiology is understood roughly by defective hematopoiesis, impaired bone marrow micro-environment and immune mechanism. Treatments are performed on basis of pathogenesis and selected depending on the severity. Immunosuppressive therapy with antilymphocyte or antithymocyte globulin and cyclosporine is effective in the majority of patients but has some problems including relapse or clonal evolution. Recently, there have been clinical trials of immunosuppression with hematopoietic growth factors or other drugs. Allogeneic hematopoietic stem cell transplantation (HSCT) is curative in children with severe aplastic anemia. The overall survival in HSCT from HLA-identical sibling is higher than alternative donor, including HLA matched unrelated donor or cord blood. We have to consider quality of life after HSCT because of high survival rate. However, chronic graft versus host disease and graft failure are important factors that affect the quality of life and overall survival. We need further investigation to make new regimens aimed at overcoming these risk factors and perform clinical trials.

A systematic mRNA control mechanism for germline stem cell homeostasis and cell fate specification

  • Lee, Myon-Hee;Mamillapalli, Srivalli Swathi;Keiper, Brett D.;Cha, Dong Seok
    • BMB Reports
    • /
    • v.49 no.2
    • /
    • pp.93-98
    • /
    • 2016
  • Germline stem cells (GSCs) are the best understood adult stem cell types in the nematode Caenorhabditis elegans, and have provided an important model system for studying stem cells and their cell fate in vivo, in mammals. In this review, we propose a mechanism that controls GSCs and their cell fate through selective activation, repression and mobilization of the specific mRNAs. This mechanism is acutely controlled by known signal transduction pathways (e.g., Notch signaling and Ras-ERK MAPK signaling pathways) and P granule (analogous to mammalian germ granule)-associated mRNA regulators (FBF-1, FBF-2, GLD-1, GLD-2, GLD-3, RNP-8 and IFE-1). Importantly, all regulators are highly conserved in many multi-cellular animals. Therefore, GSCs from a simple animal may provide broad insight into vertebrate stem cells (e.g., hematopoietic stem cells) and their cell fate specification.