• Title/Summary/Keyword: hematopoietic inhibition

Search Result 26, Processing Time 0.024 seconds

Effects of Dietary Vitamin E and Selenium on Hematopoiesis and Antioxidative Detoxification Mechanism in Lead Poisoned Rats (식이 Vitamin E와 Selenium이 납중독된 흰쥐에 있어서 조혈작용과 항산화적 해독기구에 미치는 영향)

  • 이순재;박규영;김관유
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.6
    • /
    • pp.651-657
    • /
    • 1993
  • The protective effects of dietary vatamin E and selenium on peroxidative damage and hematopoietic inhibition by lead poisoning were investigated in rats. Male Sprague-Dawley rats weighing 150$\pm$5g were divided into six groups according to dietary vitamin E and / or selenium levels, i.e. control(vitamin E, 40mg/kg diet), 0E(without vitamin E, Se), 40E(vitamin E, 40mg/kg diet ; without Se), 200E(vitamin E, 200mg/kg diet ; without Se), 200ES(vitamin E, 200mg/kg diet ; Se, 0.5ppm) and 0Es(without vitamin E ; Se, 0.5ppm) groups. All experimental groups were fed ad libitum 2000ppm lead in diet except control for 4 weeks. Hemoglobin contents and hematocrit values of lead groups were lower than control group except 200ES group and were the lowest in 0E group. Aminolevulinic acid dehydratase(ALAD) activities of blood and liver were sequentially reduced in 200ES, 200E, 0ES, 40E and 0E groups, compared to control, were as urinary aminolevulinic acid (ALA) excretions were increased in the groups which represented low ALAD activity. Heapatic superoxide dismutase(SOD) activities was lower in 0E, and higher in 40E, 200E and 200ES groups, compared with control. Glutathione peroxidase(GPX) activities of liver were reduced in 0E and 40E groups, but those of 0ES, 200E and 200ES groups were significantly increased. Especially GPX activities in 200ES and 200ES groups were not different from control group. The reduced glutathione contents in liver were lowest in 0E and 40E groups, compared with control, whereas levels of the oxidized form were opposite phenomena of that. Liver lipid peroxide values of 0E, 0ES, 40E and 200E groups were 6.4, 2.9, 2.1 and 1.3 fold higher than control, respectively, but 200ES groups was not different from control.

  • PDF

Effect of Steam Distillates Prepared from Herbal Medicines on Immunostimulating Activity (생약으로부터 조제된 수증기 증류물의 면역활성)

  • 이창호;김인호;김영언;김용조;황종현;유광원
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.4
    • /
    • pp.626-632
    • /
    • 2004
  • Of hot- water extracts prepared from 30 kinds of herbal medicines, Acanthopanax senticosus (75.6% inhibition of control), Atractylodes macrocephale (71.3%), Panax ginseng (70.0%), Glycyrrhiza uralensis (66.3%) and Angelica acutiloba (63.1%) showed the potent tumor metastasis inhibition activity against colon 26-M3.1 lung carcinoma at 2.5 mg/kg body weight, whereas the other extracts had a little activity, except for Pueraria thunbergiana (58.6%) and C. leticulata (54.9%) having the intermediate activity. We also found that Citrus leticulata (1.80-fold of control), A. macrocephale (1.73-fold), A. senticosus and G. uralensis (1.64-fold) enhanced on Peyer's patch cells mediated-hematopoietic response at 100 $\mu\textrm{g}$/mL. In addition, these active herbal medicines were prepared into steam distillates to improve the food rheology as beverage, and to remove the inactive components. Among these steam distillates, A. macrocephale, G. uralensis and A. senticosus showed the significant tumor metastasis inhibition activity at 2.5 mg/kg body weight (58.7%, 50.3% and 41.9%, respectively), and A. macrocephale had the potent activity even at 0,25 mg/kg body weight (49.7%). In treatments of steam distillates with Peyer's patch cells, A. macrocephale and A. senticosus significantly increased the bone marrow cell proliferation even at 10 $\mu\textrm{g}$/mL (1.49- and 1.28-fold of control). Although steam distillates had lower activity than hot-water extracts, herbal medicines, such as A. macrocephale and A. senticosus, showed the high immunostimulating activity in hot-water extracts as well as steam distillates. Therefore, these results assumed the possibility that steam distillates from herbal medicines might be utilized to food industry for beverage.

Effect of Water Extract of Aloe in RANKL-induced Osteoclast Differentiation (파골세포 분화에 미치는 노회(蘆會) 추출물의 효과)

  • Lee, Jeong-Hugh;Lee, Myeung-Su;Chae, Soo-Uk;Kim, Ha-Young;Moon, Seo-Young;Jeon, Byung-Hoon;Cho, Hae-Joong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.6
    • /
    • pp.1008-1013
    • /
    • 2011
  • Osteoporosis is the leading underlying cause of fractures, particularly in postmenopausal women, due to the loss of estrogen-mediated suppression of bone resorption. More than 50% of adults 50 years of age or older are estimated to have osteoporosis. Osteoclast which is main target for treatment of osteoporosis is originated from hematopoietic cell line. Aloe has been widely used in worldwide country as a coadjuvant medicine. Extracts of the leaves of Aloe have been used in condition to improve dermatologic problem such as seborrheic dermatitis, aphthous stomatitis, xerosis, lichen planus and has been known to exert anti-inflammatory, anti-oxidant and anti-tumor effects. However, despite the popularity of aloe as a plant food supplements, the evaluation of its efficacy as a possible therapeutic option for osteoporosis remains scarce. Thus, we evaluated the effect of Aloe on receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation. Here we found that Aloe significantly inhibited osteoclast differentiation induced by RANKL. Aloe suppressed the activation of p38 pathway and $NF{\kappa}B$ in bone marrow macrophages (BMMs) treated with RANKL. Also, Aloe significantly inhibited the mRNA expression of c-Fos, tartrate-resistant acid phosphatase (TRAP), osteoclast-associated receptor (OSCAR), nuclear factor of activated T cells (NFAT)c1 and cathepsin K in BMMs treated with RANKL. Particularly, Aloe greatly inhibited the protein expression of c-fos and NFATc1. Taken together, our results suggested that Aloe may be useful tool for treatment of osteoporosis by inhibition of osteoclast differentiation.

Senescence as A Consequence of Ginsenoside Rg1 Response on K562 Human Leukemia Cell Line

  • Liu, Jun;Cai, Shi-Zhong;Zhou, Yue;Zhang, Xian-Ping;Liu, Dian-Feng;Jiang, Rong;Wang, Ya-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6191-6196
    • /
    • 2012
  • Aims and Background: Traditional chemotherapy strategies for human leukemia commonly use drugs based on cytotoxicity to eradicate cancer cells. One predicament is that substantial damage to normal tissues is likely to occur in the course of standard treatments. Obviously, it is urgent to explore therapies that can effectively eliminate malignant cells without affecting normal cells. Our previous studies indicated that ginsenoside $Rg_1$ ($Rg_1$), a major active pharmacological ingredient of ginseng, could delay normal hematopoietic stem cell senescence. However, whether $Rg_1$ can induce cancer cell senescence is still unclear. Methods: In the current study, human leukemia K562 cells were subjected to $Rg_1$ exposure. The optimal drug concentration and duration with K562 cells was obtained by MTT colorimetric test. Effects of $Rg_1$ on cell cycle were analyzed using flow cytometry and by SA-${\beta}$-Gal staining. Colony-forming ability was measured by colony-assay. Telomere lengths were assessed by Southern blotting and expression of senescence-associated proteins P21, P16 and RB by Western blotting. Ultrastructural morphology changes were observed by transmission electron microscopy. Results: K562 cells demonstrated a maximum proliferation inhibition rate with an $Rg_1$ concentration of $20{\mu}\;mol{\cdot}L^{-1}$ for 48h, the cells exhibiting dramatic morphological alterations including an enlarged and flat cellular morphology, larger mitochondria and increased number of lysosomes. Senescence associated-${\beta}$-galactosidase (SA-${\beta}$-Gal) activity was increased. K562 cells also had decreased ability for colony formation, and shortened telomere length as well as reduction of proliferating potential and arrestin $G_2$/M phase after $Rg_1$ interaction. The senescence associated proteins P21, P16 and RB were significantly up-regulated. Conclusion: Ginsenoside $Rg_1$ can induce a state of senescence in human leukemia K562 cells, which is associated with p21-Rb and p16-Rb pathways.

Panax ginseng and its ginsenosides: potential candidates for the prevention and treatment of chemotherapy-induced side effects

  • Wan, Yan;Wang, Jing;Xu, Jin-feng;Tang, Fei;Chen, Lu;Tan, Yu-zhu;Rao, Chao-long;Ao, Hui;Peng, Cheng
    • Journal of Ginseng Research
    • /
    • v.45 no.6
    • /
    • pp.617-630
    • /
    • 2021
  • Chemotherapy-induced side effects affect the quality of life and efficacy of treatment of cancer patients. Current approaches for treating the side effects of chemotherapy are poorly effective and may cause numerous harmful side effects. Therefore, developing new and effective drugs derived from natural nontoxic compounds for the treatment of chemotherapy-induced side effects is necessary. Experiments in vivo and in vitro indicate that Panax ginseng (PG) and its ginsenosides are undoubtedly non-toxic and effective options for the treatment of chemotherapy-induced side effects, such as nephrotoxicity, hepatotoxicity, cardiotoxicity, immunotoxicity, and hematopoietic inhibition. The mechanism focus on anti-oxidation, anti-inflammation, and anti-apoptosis, as well as the modulation of signaling pathways, such as nuclear factor erythroid-2 related factor 2 (Nrf2)/heme oxygenase-1 (HO-1), P62/keap1/Nrf2, c-jun Nterminal kinase (JNK)/P53/caspase 3, mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinases (ERK), AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR), mitogen-activated protein kinase kinase 4 (MKK4)/JNK, and phosphatidylinositol 3-kinase (PI3K)/AKT. Since a systemic review of the effect and mechanism of PG and its ginsenosides on chemotherapy-induced side effects has not yet been published, we provide a comprehensive summarization with this aim and shed light on the future research of PG.

Growth Inhibitory and Pro-Apoptotic Effects of Hirsuteine in Chronic Myeloid Leukemia Cells through Targeting Sphingosine Kinase 1

  • Gao, Shan;Guo, Tingting;Luo, Shuyu;Zhang, Yan;Ren, Zehao;Lang, Xiaona;Hu, Gaoyong;Zuo, Duo;Jia, Wenqing;Kong, Dexin;Yu, Haiyang;Qiu, Yuling
    • Biomolecules & Therapeutics
    • /
    • v.30 no.6
    • /
    • pp.553-561
    • /
    • 2022
  • Chronic myeloid leukemia (CML) is a slowly progressing hematopoietic cell disorder. Sphingosine kinase 1 (SPHK1) plays established roles in tumor initiation, progression, and chemotherapy resistance in a wide range of cancers, including leukemia. However, small-molecule inhibitors targeting SPHK1 in CML still need to be developed. This study revealed the role of SPHK1 in CML and investigated the potential anti-leukemic activity of hirsuteine (HST), an indole alkaloid obtained from the oriental plant Uncaria rhynchophylla, in CML cells. These results suggest that SPHK1 is highly expressed in CML cells and that overexpression of SPHK1 represents poor clinical outcomes in CML patients. HST exposure led to G2/M phase arrest, cellular apoptosis, and downregulation of Cyclin B1 and CDC2 and cleavage of Caspase 3 and PARP in CML cells. HST shifted sphingolipid rheostat from sphingosine 1-phosphate (S1P) towards the ceramide coupled with a marked inhibition of SPHK1. Mechanistically, HST significantly blocked SPHK1/S1P/S1PR1 and BCR-ABL/PI3K/Akt pathways. In addition, HST can be docked with residues of SPHK1 and shifts the SPHK1 melting curve, indicating the potential protein-ligand interactions between SPHK1 and HST in both CML cells. SPHK1 overexpression impaired apoptosis and proliferation of CML cells induced by HST alone. These results suggest that HST, which may serve as a novel and specific SPHK1 inhibitor, exerts anti-leukemic activity by inhibiting the SPHK1/S1P/S1PR1 and BCR-ABL/PI3K/Akt pathways in CML cells, thus conferring HST as a promising anti-leukemic drug for CML therapy in the future.