• Title/Summary/Keyword: helpfulness reviews

Search Result 27, Processing Time 0.022 seconds

The Prediction of the Helpfulness of Online Review Based on Review Content Using an Explainable Graph Neural Network (설명가능한 그래프 신경망을 활용한 리뷰 콘텐츠 기반의 유용성 예측모형)

  • Eunmi Kim;Yao Ziyan;Taeho Hong
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.309-323
    • /
    • 2023
  • As the role of online reviews has become increasingly crucial, numerous studies have been conducted to utilize helpful reviews. Helpful reviews, perceived by customers, have been verified in various research studies to be influenced by factors such as ratings, review length, review content, and so on. The determination of a review's helpfulness is generally based on the number of 'helpful' votes from consumers, with more 'helpful' votes considered to have a more significant impact on consumers' purchasing decisions. However, recently written reviews that have not been exposed to many customers may have relatively few 'helpful' votes and may lack 'helpful' votes altogether due to a lack of participation. Therefore, rather than relying on the number of 'helpful' votes to assess the helpfulness of reviews, we aim to classify them based on review content. In addition, the text of the review emerges as the most influential factor in review helpfulness. This study employs text mining techniques, including topic modeling and sentiment analysis, to analyze the diverse impacts of content and emotions embedded in the review text. In this study, we propose a review helpfulness prediction model based on review content, utilizing movie reviews from IMDb, a global movie information site. We construct a review helpfulness prediction model by using an explainable Graph Neural Network (GNN), while addressing the interpretability limitations of the machine learning model. The explainable graph neural network is expected to provide more reliable information about helpful or non-helpful reviews as it can identify connections between reviews.

Development of Customer Review Ranking Model Considering Product and Service Aspects Using Random Forest Regression Method

  • Arif Djunaidy;Nisrina Fadhilah Fano
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.8
    • /
    • pp.2137-2156
    • /
    • 2024
  • Customer reviews are the second-most reliable source of information, followed by family and friend referrals. However, there are many existing customer reviews. Some online shopping platforms address this issue by ranking customer reviews according to their usefulness. However, we propose an alternative method to rank customer reviews, given that this system is easily manipulable. This study aims to create a ranking model for reviews based on their usefulness by combining product and seller service aspects from customer reviews. This methodology consists of six primary steps: data collection and preprocessing, aspect extraction and sentiment analysis, followed by constructing a regression model using random forest regression, and the review ranking process. The results demonstrate that the ranking model with service considerations outperformed the model without service considerations. This demonstrates the model's superiority in the three tests, which include a comparison of the regression results, the aggregate helpfulness ratio, and the matching score.

Explainable Artificial Intelligence Applied in Deep Learning for Review Helpfulness Prediction (XAI 기법을 이용한 리뷰 유용성 예측 결과 설명에 관한 연구)

  • Dongyeop Ryu;Xinzhe Li;Jaekyeong Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.35-56
    • /
    • 2023
  • With the development of information and communication technology, numerous reviews are continuously posted on websites, which causes information overload problems. Therefore, users face difficulty in exploring reviews for their decision-making. To solve such a problem, many studies on review helpfulness prediction have been actively conducted to provide users with helpful and reliable reviews. Existing studies predict review helpfulness mainly based on the features included in the review. However, such studies disable providing the reason why predicted reviews are helpful. Therefore, this study aims to propose a methodology for applying eXplainable Artificial Intelligence (XAI) techniques in review helpfulness prediction to address such a limitation. This study uses restaurant reviews collected from Yelp.com to compare the prediction performance of six models widely used in previous studies. Next, we propose an explainable review helpfulness prediction model by applying the XAI technique to the model with the best prediction performance. Therefore, the methodology proposed in this study can recommend helpful reviews in the user's purchasing decision-making process and provide the interpretation of why such predicted reviews are helpful.

The Impact of Online Review Content and Linguistic Style on Review Helpfulness (온라인 리뷰 콘텐츠와 언어 스타일이 리뷰 유용성에 미치는 영향)

  • Li, Jiaen;Yan, Jinzhe
    • Knowledge Management Research
    • /
    • v.23 no.2
    • /
    • pp.253-276
    • /
    • 2022
  • Online reviews attract much attention because they play an essential role in consumer decision-making. Therefore, it is necessary to investigate the review attributes that affect the perceived helpfulness of consumers. However, most previous studies on the helpfulness of online reviews mainly focus on quantitative factors such as review volume and reviewer attributes. Recently, some studies have investigated the impact of review content and linguistic style matching on consumers' purchase decision-making. Those studies show that consumers consider additional review attributes when evaluating reviews in decision-making. To fill the research gap with existing literature, we investigated the impact of review content and linguistic style matching on review helpfulness. Moreover, this study investigated how the reviewers' expertise moderates the effect of the review content and linguistic style matching on the review helpfulness. The empirical results show that positive affective content has a negative effect on the review helpfulness. The negative affective content and linguistic style matching positively affect review helpfulness. Review expertise relieved the impact of negative affective content and linguistic style matching on review helpfulness. According to the mechanism confirmed in this study, online e-commerce companies can achieve corporate sales growth by identifying factors affecting review helpfulness and reflecting them in their marketing strategies.

A multi-channel CNN based online review helpfulness prediction model (Multi-channel CNN 기반 온라인 리뷰 유용성 예측 모델 개발에 관한 연구)

  • Li, Xinzhe;Yun, Hyorim;Li, Qinglong;Kim, Jaekyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.171-189
    • /
    • 2022
  • Online reviews play an essential role in the consumer's purchasing decision-making process, and thus, providing helpful and reliable reviews is essential to consumers. Previous online review helpfulness prediction studies mainly predicted review helpfulness based on the consistency of text and rating information of online reviews. However, there is a limitation in that representation capacity or review text and rating interaction. We propose a CNN-RHP model that effectively learns the interaction between review text and rating information to improve the limitations of previous studies. Multi-channel CNNs were applied to extract the semantic representation of the review text. We also converted rating into independent high-dimensional embedding vectors representing the same dimension as the text vector. The consistency between the review text and the rating information is learned based on element-wise operations between the review text and the star rating vector. To evaluate the performance of the proposed CNN-RHP model in this study, we used online reviews collected from Amazom.com. Experimental results show that the CNN-RHP model indicates excellent performance compared to several benchmark models. The results of this study can provide practical implications when providing services related to review helpfulness on online e-commerce platforms.

The Effect of Text Consistency between the Review Title and Content on Review Helpfulness (온라인 리뷰의 제목과 내용의 일치성이 리뷰 유용성에 미치는 영향)

  • Li, Qinglong;Kim, Jaekyeong
    • Knowledge Management Research
    • /
    • v.23 no.3
    • /
    • pp.193-212
    • /
    • 2022
  • Many studies have proposed several factors that affect review helpfulness. Previous studies have investigated the effect of quantitative factors (e.g., star ratings) and affective factors (e.g., sentiment scores) on review helpfulness. Online reviews contain titles and contents, but existing studies focus on the review content. However, there is a limitation to investigating the factors that affect review helpfulness based on the review content without considering the review title. However, previous studies independently investigated the effect of review content and title on review helpfulness. However, it may ignore the potential impact of similarity between review titles and content on review helpfulness. This study used text consistency between review titles and content affect review helpfulness based on the mere exposure effect theory. We also considered the role of information clearness, review length, and source reliability. The results show that text consistency between the review title and the content negatively affects the review helpfulness. Furthermore, we found that information clearness and source reliability weaken the negative effects of text consistency on review helpfulness.

A Personalized Approach for Recommending Useful Product Reviews Based on Information Gain

  • Choeh, Joon Yeon;Lee, Hong Joo;Park, Sung Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1702-1716
    • /
    • 2015
  • Customer product reviews have become great influencers of purchase decision making. To assist potential customers, online stores provide various ways to sort customer reviews. Different methods have been developed to identify and recommend useful reviews to customers, primarily using feedback provided by customers about the helpfulness of reviews. Most of the methods consider the preferences of all users to determine whether reviews are helpful, and all users receive the same recommendations.

Automatic Product Review Helpfulness Estimation based on Review Information Types (상품평의 정보 분류에 기반한 자동 상품평 유용성 평가)

  • Kim, Munhyong;Shin, Hyopil
    • Journal of KIISE
    • /
    • v.43 no.9
    • /
    • pp.983-997
    • /
    • 2016
  • Many available online product reviews for any given product makes it difficult for a consumer to locate the helpful reviews. The purpose of this study was to investigate automatic helpfulness evaluation of online product reviews according to review information types based on the target of information. The underlying assumption was that consumers find reviews containing specific information related to the product itself or the reliability of reviewers more helpful than peripheral information, such as shipping or customer service. Therefore, each sentence was categorized by given information types, which reduced the semantic space of review sentences. Subsequently, we extracted specific information from sentences by using a topic-based representation of the sentences and a clustering algorithm. Review ranking experiments indicated more effective results than other comparable approaches.

A Study of Factors Influencing Helpfulness of Game Reviews: Analyzing STEAM Game Review Data (게임 유용성 평가에 미치는 요인에 관한 연구: 스팀(STEAM) 게임 리뷰데이터 분석)

  • Kang, Ha-Na;Yong, Hye-Ryeon;Hwang, Hyun-Seok
    • Journal of Korea Game Society
    • /
    • v.17 no.3
    • /
    • pp.33-44
    • /
    • 2017
  • With the development of the Internet environment, various types of online reviews are being generated and exchanged among consumers to share their opinions. In line with this trend, companies are making efforts to analyze online reviews and use the results in various business activities such as marketing, sales, and product development. However, research on online review in industry related to 'Video Game' which is representative experience goods has not been performed enough. Therefore, this study analyzed STEAM community review data using machine learning techniques. We analyzed the factors affecting the opinion of other users' game review. We also propose managerial implications to incease user loyalty and usability.

Impact of Semantic Characteristics on Perceived Helpfulness of Online Reviews (온라인 상품평의 내용적 특성이 소비자의 인지된 유용성에 미치는 영향)

  • Park, Yoon-Joo;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.29-44
    • /
    • 2017
  • In Internet commerce, consumers are heavily influenced by product reviews written by other users who have already purchased the product. However, as the product reviews accumulate, it takes a lot of time and effort for consumers to individually check the massive number of product reviews. Moreover, product reviews that are written carelessly actually inconvenience consumers. Thus many online vendors provide mechanisms to identify reviews that customers perceive as most helpful (Cao et al. 2011; Mudambi and Schuff 2010). For example, some online retailers, such as Amazon.com and TripAdvisor, allow users to rate the helpfulness of each review, and use this feedback information to rank and re-order them. However, many reviews have only a few feedbacks or no feedback at all, thus making it hard to identify their helpfulness. Also, it takes time to accumulate feedbacks, thus the newly authored reviews do not have enough ones. For example, only 20% of the reviews in Amazon Review Dataset (Mcauley and Leskovec, 2013) have more than 5 reviews (Yan et al, 2014). The purpose of this study is to analyze the factors affecting the usefulness of online product reviews and to derive a forecasting model that selectively provides product reviews that can be helpful to consumers. In order to do this, we extracted the various linguistic, psychological, and perceptual elements included in product reviews by using text-mining techniques and identifying the determinants among these elements that affect the usability of product reviews. In particular, considering that the characteristics of the product reviews and determinants of usability for apparel products (which are experiential products) and electronic products (which are search goods) can differ, the characteristics of the product reviews were compared within each product group and the determinants were established for each. This study used 7,498 apparel product reviews and 106,962 electronic product reviews from Amazon.com. In order to understand a review text, we first extract linguistic and psychological characteristics from review texts such as a word count, the level of emotional tone and analytical thinking embedded in review text using widely adopted text analysis software LIWC (Linguistic Inquiry and Word Count). After then, we explore the descriptive statistics of review text for each category and statistically compare their differences using t-test. Lastly, we regression analysis using the data mining software RapidMiner to find out determinant factors. As a result of comparing and analyzing product review characteristics of electronic products and apparel products, it was found that reviewers used more words as well as longer sentences when writing product reviews for electronic products. As for the content characteristics of the product reviews, it was found that these reviews included many analytic words, carried more clout, and related to the cognitive processes (CogProc) more so than the apparel product reviews, in addition to including many words expressing negative emotions (NegEmo). On the other hand, the apparel product reviews included more personal, authentic, positive emotions (PosEmo) and perceptual processes (Percept) compared to the electronic product reviews. Next, we analyzed the determinants toward the usefulness of the product reviews between the two product groups. As a result, it was found that product reviews with high product ratings from reviewers in both product groups that were perceived as being useful contained a larger number of total words, many expressions involving perceptual processes, and fewer negative emotions. In addition, apparel product reviews with a large number of comparative expressions, a low expertise index, and concise content with fewer words in each sentence were perceived to be useful. In the case of electronic product reviews, those that were analytical with a high expertise index, along with containing many authentic expressions, cognitive processes, and positive emotions (PosEmo) were perceived to be useful. These findings are expected to help consumers effectively identify useful product reviews in the future.