More and more people are gravitating to reading products reviews prior to making purchasing decisions. As a number of reviews that vary in usefulness are posted every day, much attention is being paid to measuring their helpfulness. The goal of this paper is to investigate firstly various determinants of the helpfulness of reviews, and intends to examine the moderating effect of product type, i.e., search or experience goods on the product sales, helpfulness and helpfulness votes of online reviews. The determinants include product data, review characteristics, and textual characteristics of reviews. The results indicate that the direct effect exists for the determinants of product sales, helpfulness, and helpfulness votes. Further, the moderating effects of product type exist for these determinants on three dependent variables. The results of study will identify helpful online review and design review sites effectively.
Purpose: This study aims to examine how to review contents of experiential and utilitarian products (e.g., skincare products) and how to affect review helpfulness by applying natural language processing techniques. Research design, data, and methodology: This study uses 69,633 online reviews generated for the products registered at Amazon.com by 13 Korean cosmetic firms. The authors identify key topics that emerge about consumers' use of skincare products such as skin type and skin trouble, by applying bigram analysis. The review content variables are included in the review helpfulness model, including other important determinants. Results: The estimation results support the positive effect of review extremity and content on the helpfulness. In particular, the reviewer's skin type information was recognized as highly useful when presented together as a basis for high-rated reviews. Moreover, the content related to skin issues positively affects review helpfulness. Conclusions: The positive relationship between extreme reviews and helpfulness of reviews challenges the findings from prior literature. This result implies that an in-depth study of the effect of product types on review helpfulness is needed. Furthermore, a positive effect of review content on helpfulness suggests that applying big data analytics can provide meaningful customer insights in the online retail industry.
Purpose: This study is a quantitative study and analyzes the effect of evaluating the extreme and usefulness of product reviews on sales performance by using text mining techniques based on product review big data. We investigate whether the perceived helpfulness of product reviews serves as a mediating factor in the impact of product review extremity on sales performance. Research design, data and methodology: The analysis emphasizes customer interaction factors associated with both product review helpfulness and sales performance. Out of the 8.26 million Amazon product reviews in the book category collected by He & McAuley (2016), text mining using natural language processing methodology was performed on 300,000 product reviews, and the hypothesis was verified through hierarchical regression analysis. Results: The extremity of product reviews exhibited a negative impact on the evaluation of helpfulness. And the helpfulness played a mediating role between the extremity of product reviews and sales performance. Conclusion: Increased inclusion of extreme content in the product review's text correlates with a diminished evaluation of helpfulness. The evaluation of helpfulness exerts a negative mediating effect on sales performance. This study offers empirical insights for digital market distributors and sellers, contributing to the research field related to product reviews based on review ratings.
Purpose This study analyzed the topic of game review contents and how the characteristics of game reviews affect the reviews helpfulness. In addition, this study explore the content of game reviews according to the game's sales strategy such as early access strategy and releasing without early access. Design/methodology/approach We collected a list of 3,572 action genre games released in 2020. 58,336 online reviews were collected by random sampling 50 reviews in each games, and topic modeling was performed on those reviews. We dynamized the results of topic modeling and analyzed the effect on review helpfulness with multiple regression analysis. Findings The results of analysis indicate that the longer the review is or the shorter the time it is written, the more helpful the review is. In addition the topic with positive and negative review has a significant effect on the review helpfulness. As a result of exploratory analysis, games from early access had relatively fewer reviews of story-related topics than games that were released without early access. These findings can present direct guidelines for collecting specific opinions from customers in the game industry when releasing games.
자극에 대한 변화의 과정을 통해 자신의 상태를 나타내는 감성과 어떤 현상에 대해 느끼는 단순한 심리상태를 나타내는 감정은 혼용되어 사용되는 경향이 있으나 그 의미와 쓰임새는 다르다. 본 연구에서는 온라인 소비자들이 다양한 제품과 서비스를 구매하고 사용한 후에 작성한 온라인 리뷰를 통해 감성과 감정을 구분하여 리뷰의 유용성에 어떠한 영향을 미치는지 알아보고자 한다. 최근 온라인 리뷰는 비즈니스 및 소비자에게 매우 중요한 요소로 자리매김하고 있다. 유용한 리뷰는 잠재 고객들의 의사결정 과정에서 핵심적인 역할을 하고 있으며 리뷰 유용성을 통해 평가될 수 있다. 리뷰 유용성은 소비자 개인의 구매 의사결정 문제뿐만 아니라 비즈니스에서 마케팅 전략에 활용됨으로써 실무적 중요성은 점차 커지고 있으며, 학문적으로도 리뷰 유용성의 영향요인을 찾는 연구의 중요성이 커지고 있다. 본 연구에서는 Yelp.com에서 레스토랑에 대한 리뷰를 확보하여 온라인 리뷰의 감성과 감정이 리뷰의 유용성에 어떠한 영향을 미치는지에 대한 연구를 진행하였다. 선행연구를 기반으로 온라인 리뷰에 대한 감성과 감정을 포함한 연구 모형을 구축하였으며, 텍스트 마이닝을 통해 온라인 리뷰의 감성과 감정이 온라인 리뷰의 유용성에 어떠한 영향을 미치는지 분석하고 감정에 대한 영향의 차이가 있는지를 검증하였다. 연구결과에서 부정적인 감성과 감정이 리뷰 유용성에 미치는 영향이 더 크며 이는 부정 편향성 이론과 일치하는 것으로 나타났다. 그리고 각각의 감정이 리뷰 유용성에 미치는 영향이 서로 차이가 있는 것으로 나타났다.
Online reviews play a significant role in consumer purchase decisions on e-commerce platforms. To address information overload in the context of online reviews, factors that drive review helpfulness have received considerable attention from scholars and practitioners. The purpose of this study is to explore the differential effects of discrete emotions (anger, disgust, fear, joy, sadness, and surprise) on perceived review helpfulness, drawing on cognitive appraisal theory of emotion and expectation-confirmation theory. Emotions embedded in 56,157 hotel reviews collected from TripAdvisor.com were extracted based on a transfer learning model to measure emotion variables as an alternative to dictionary-based methods adopted in previous research. We found that anger and fear have positive impacts on review helpfulness, while disgust and joy exert negative impacts. Moreover, hotel star-classification significantly moderates the relationships between several emotions (disgust, fear, and joy) and perceived review helpfulness. Our results extend the understanding of review assessment and have managerial implications for hotel managers and e-commerce vendors.
Purpose This study investigated the impact of review language style (affective vs. cognitive) on review helpfulness and the moderating effects of the types of attractions in the relationships between the review language and its helpfulness. Design/methodology/approach This study investigates the impact of review language style (affective vs. cognitive) on review helpfulness and the moderating effects of the types of attractions in the relationships between the review language and its helpfulness. This study selected two hedonic and utilitarian attractions (Hedonic: Brandenburg Gate, Utilitarian: Peragamon Museum) located in Berlin. A total of 3,320 reviews was collected from TripAdvisor. We divided online reviews posted for these places into reviews with more affective language and with more cognitive language by using the LIWC. Then, we investigated the impact of language effect on review helpfulness across the attraction type. Findings The findings suggest that peers tend to judge more helpful toward cognitive language in attraction reviews regardless of attraction type. This study found that peers tend to perceive more helpful toward cognitive review in utilitarian attractions. Even though there was an interaction effect between review language and attraction type, in hedonic attractions, the influence of cognitive language was reduced, but still cognitive reviews would get more helpful votes.
Purpose This study aims to develop classification models using a decision tree algorithm to identify core keywords and rules influencing online consumer review evaluations for the robot vacuum cleaner on Amazon.com. The difference from previous studies is that we analyze core keywords that affect the evaluation results by dividing the subjects that evaluate online consumer reviews into self-evaluation (star ratings) and peer evaluation (helpfulness votes). We investigate whether the core keywords influencing star ratings and helpfulness votes vary across different products and whether there is a similarity in the core keywords related to star ratings or helpfulness votes across all products. Design/methodology/approach We used random under-sampling to balance the dataset. We progressively removed independent variables based on decreasing importance through backwards elimination to evaluate the classification model's performance. As a result, we identified classification models that best predict star ratings and helpfulness votes for each product's online consumer reviews. Findings We have identified that the core keywords influencing self-evaluation and peer evaluation vary across different products, and even for the same model or features, the core keywords are not consistent. Therefore, companies' producers and marketing managers need to analyze the core keywords of each product to highlight the advantages and prepare customized strategies that compensate for the shortcomings.
Customer reviews are one of the important sources for purchase decision makings in online stores. Online stores have tried to provide useful reviews in product pages to customers. To assess the usefulness of customer reviews before other users have voted enough on the reviews, diverse aspects of reviews were utilized in prevous studies. Style and semantic information were utilized in many studies. This study aims to test diverse alogrithms and datasets for identifying a proper classification method and threshold to classify useful reviews. In particular, most researches utilized ratio type helpfulness index as Amazon.com used. However, there is another type of usefulness index utilized in TripAdviser.com or Yelp.com, count type helpfulness index. There was no proper threshold to classify useful reviews yet for count type helpfulness index. This study used reivews and their usefulness votes on restaurnats from Yelp.com to devise diverse datasets and applied text mining approaches to classify useful reviews. Random Forest, SVM, and GLMNET showed the greater values of accuracy than other approaches.
최근 온라인 쇼핑 활동의 증가와 함께 소비자들은 온라인상에서의 제품에 대한 리뷰를 합리적인 구매 결정을 내리기 위한 중요한 정보로 활용하고 있다. 하지만 소비자들은 많은 양의 온라인 리뷰 중 그들의 구매 결정에 유익하게 활용될 리뷰를 선택하기가 쉽지 않다. 따라서 본 연구에서는 정교화 가능성 이론(elaboration likelihood model)을 바탕으로, 유익한 온라인 소비자 리뷰를 결정하는 요인이 무엇인지 알아보고, 구매하고자 하는 제품의 가격에 따라 유익한 리뷰를 결정짓는 요인이 어떻게 변화되는지를 분석하고자 한다. 본 분석을 위해 아마존 닷컴의 75,226개의 온라인 소비자 리뷰 데이터를 수집하고, 리뷰 메시지의 감정어 분석 (sentimental analysis)을 통해 메시지 내용에 대한 정량변수도 확보하였다. 다중회귀분석 결과, 리뷰 점수, 리뷰어에 대한 랭킹 정보를 포함하는 주변적 단서(peripheral cues)와 리뷰 메시지의 단어 수, 부정어 비율의 중심적 단서(central cues) 모두 리뷰의 유익성에 영향을 미치는 것으로 나타났다. 또한, 고가격 제품과 저가격 제품에서 유익한 리뷰를 결정하는 요인이 다르게 나타남을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.