• Title/Summary/Keyword: helical structure

Search Result 265, Processing Time 0.021 seconds

Oligomeric Structure of ${\beta}$-Glucosidases

  • Kim, Sang-Yeob;Kimm, In-Soo
    • Journal of Photoscience
    • /
    • v.11 no.3
    • /
    • pp.121-127
    • /
    • 2004
  • The${\beta}$-glucosidases occur widely in all living organisms and has in general a tendency to form oligomers of varying numbers of subunits or aggregates, although the functional implications of such diverse oligomerization schemes remain unclear. In particular, the assembly mode of the oat ${\beta}$-glucosidase is very unique in that it multimerizes by linear stacking of a hexameric building block to form long fibrillar multimers. Some structural proteins such as actin and tubulin assemble into long fibrils in a helical fashion and several enzymes such as GroEL and Pyrodictium ATPase functional complexes, 20S proteasome of the archaebacterium Thermoplasma acidophilum, and lutamine synthetase fromblue-green algae, assemble into discrete oligomers upto 4 stacked rings to maintain their enzymatic activities. In particular, oat ${\beta}$-glucosidase exists in vivo as a discrete long fibrillar multimer assembly that is a novel structure for enzyme protein. It is assembled by linear stacking of hollow trimeric units. The fibril has a long central tunnel connecting to the outer medium via regularly distributed side fenestrations. The enzyme active sites are located within the central tunnel and multimerization increases enzyme affinity to the substrates and catalytic efficiency of the enzyme. Although it is suggested that oligomerization may contribute to the enzyme stability and catalytic efficiency of ${\beta}$-glycosidases, the functional implications of such diverse oligomerization schemes remain unclear so far.

  • PDF

Effect of Ultraviolet Irradiation on Molecular Properties of Ovalbumin (자외선 조사가 Ovalbumin의 분자적 성질에 미치는 영향)

  • Cho, Yong-Sik;Song, Kyung-Bin;Yamada, Koji;Han, Gui-Jung
    • Applied Biological Chemistry
    • /
    • v.51 no.4
    • /
    • pp.276-280
    • /
    • 2008
  • To elucidate the effects of ultraviolet (UV) irradiation on molecular properties of ovalbumin, the molecular weight profile, secondary structure and tertiary structure of proteins were examined after irradiation by UV with 254 nm wavelength for 4, 8, 16 and 32 hrs, respectively. UV irradiation of protein solution caused the disruption on the native state of protein molecules. SDS-PAGE and gel permeation chromatography indicated that radiation caused initial fragmentation of polypeptide chains and as a result subsequent aggregation due to cross-linking of protein molecules. Circular dichroism (CD) study showed that UV irradiation caused the change on the secondary structure resulting in decrease of helical structure or compact denature on structure of protein depending on irradiation period. Fluorescence spectroscopy indicated that irradiation quenched the emission intensity excited at 280 nm. These results suggest that UV irradiation affect the molecular properties of ovalbumin and may have potential as a means to change the antigenicity of protein allergen.

Structural Changes in Isothermal Crystallization Processes of Synthetic Polymers Studied by Time-Resolved Measurements of Synchrotron-Sourced X-Ray Scatterings and Vibrational Spectra

  • Tashiro, Kohji;Hama, Hisakatsu
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2004
  • The structural changes occurring in the isothermal crystallization processes of polyethylene (PE), poly-oxymethylene (POM), and vinylidene fluoridetrifluoroethylene (VDFTrFE) copolymer have been reviewed on the basis of our recent experimental data collected by the time-resolved measurements of synchrotron-sourced wide-angle (WAXS) and small-angle X-ray scatterings (SAXS) and infrared spectra. The temperature jump from the melt to a crystallization temperature could be measured at a cooling rate of 600-1,000 $^{\circ}C$/min, during which we collected the WAXS, SAXS, and infrared spectral data successfully at time intervals of ca. 10 sec. In the case of PE, the infrared spectral data clarified the generation of chain segments of partially disordered trans conformations immediately after the jump. These segments then became transformed into more-regular all-trans-zigzag forms, followed by the formation of an orthorhombic crystal lattice. At this stage, the generation of a stacked lamella structure having an 800-${\AA}$-long period was detected in the SAXS data. This structure was found to transfer successively to a more densely packed lamella structure having a 400-${\AA}$-long period as a result of the secondary crystallization of the amorphous region in-between the original lamellae. As for POM, the formation process of a stacked lamella structure was essentially the same as that mentioned above for PE, as evidenced from the analysis of SAXS and WAXS data. The observation of morphology-sensitive infrared bands revealed the evolution of fully extended helical chains after the generation of lamella having folded chain structures. We speculate that these extended chains exist as taut tie chains passing continuously through the neighboring lamellae. In the isothermal crystallization of VDFTrFE copolymer from the melt, a paraelectric high-temperature phase was detected at first and then it transferred into the ferroelectric low-temperature phase at a later stage. By analyzing the reflection profile of the WAXS data, the structural ordering in the high-temperature phase and the ferroelectric phase transition to the low-temperature phase of the multi-domain structure were traced successfully.

The Preliminary Study on the Structure of Cop Protein by CD and NMR

  • Kim, Yun-Kyong;Park, Sang-Ho;Lee, Jee-Hyun;Kwak, Jin-Hwan;Lee, Bong-Jin
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.3 no.2
    • /
    • pp.100-108
    • /
    • 1999
  • Cop protein is the transcription repressor protein in rolling circle replication plasmid. With antisense RNA, Cop protein controls the copy number of plasmid. Cop family proteins have been found in various plasmids. Among Cop family proteins, Cop studied in this paper consists of 55 amino acids (Mw. 6,400), and was known to have trimer structure. Since no structural facts are elucidated, we have carried out preliminary experiments aimed at the elucidation of its three dimensional structure. The secondary structure of Cop is studied by CD and NMR. To solve the aggregation of Cop at high concentration, we tested various detergents and salts. The addition of detergents and salts could not solve the aggregation problem. However, we found that concentration is important in solving the aggregation problem. We knew that 0.18mM in 50mM potassium phosphate without any other ingredients is maximum concentration not to aggregate. Wa also investigated the pH dependence of Cop protein, and knew that Cop protein is more stable in acid state. At various temperatures, 15N-1H HSQC spectra were measured in order to find the optimal experimental condition. To enhance the peak resolution, 3D NOESY-HSQC spectrum is acquired. Since there are NOE peaks in the NH-NH region, we knew that Cop protein has $\alpha$-helical content, which was also confirmed by CD.

  • PDF

The first insight into the structure of the Photosystem II reaction centre complex at $6{\AA}$ resolution determined by electron crystallography

  • Rhee, Kyong-Hi
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1999.08a
    • /
    • pp.83-90
    • /
    • 1999
  • Electron crystallography of two-dimensional crystalsand electron cryo-microscopy is becoming an established method for determining the structure and function of a variety of membrane proteins that are providing difficult to crystallize in three dimension. In this study this technique has been used to investigate the structure of a ~160 kDa reaction centre sub-core complex of photosystem II. Photosystem II is a photosynthetic membrane protein consisting of more than 25 subunits. It uses solar energy to split water releasing molecular oxygen into the atmosphere and creates electrochemical potential across the thylakoid membrane, which is eventually utilized to generate ATP and NADPH. Images were taken using Philips CM200 field emission gun electron microscope with an acceleration voltage of 200kW at liquid nitrogen temperature. In total, 79 images recorded dat tilt angles ranging from 0 to 67 degree yielded amplitudes and phases for a three-dimensional map with an in-plant resolution of 6$\AA$ and 11.4$\AA$ in the third dimension shows at least 23 transmembrane helices resolved in a monomeric complex, of which 18 were able to be assigned to the D1, D2, CP47 , and cytochrome b559 alfa beta-subunits with their associated pigments that ae active in electron transport (Rhee, 1998, Ph.D.thesis). The D1/D2 heterodimer is located in the central position within the complex and its helical scalffold is remarkably similar to that of the reaction centres not only in purple bacteria but also in plant photosystem I (PSI) , indicating a common evoluationary origin of all types of reaction centre in photosynthetic organism known today 9RHee et al. 1998). The structural homology is now extended to the inner antenna subunit, ascribed to CP47 in our map, where the 6 transmembrane helices show a striking structural similarity to the corresponding helices of the PSI reaction centre proteins. The overall arrangement of the chlorophylls in the D1 /D2 heterodimer, and in particular the distance between the central pair, is ocnsistent with the weak exciton coupling of P680 that distinguishes this reaction centre from bacterial counterpart. The map in most progress towards high resolution structure will be presented and discussed.

  • PDF

Structure-activity relationships of cecropin-like peptides and their interactions with phospholipid membrane

  • Lee, Eunjung;Jeong, Ki-Woong;Lee, Juho;Shin, Areum;Kim, Jin-Kyoung;Lee, Juneyoung;Lee, Dong Gun;Kim, Yangmee
    • BMB Reports
    • /
    • v.46 no.5
    • /
    • pp.282-287
    • /
    • 2013
  • Cecropin A and papiliocin are novel 37-residue cecropin-like antimicrobial peptides isolated from insect. We have confirmed that papiliocin possess high bacterial cell selectivity and has an ${\alpha}$-helical structure from $Lys^3$ to $Lys^{21}$ and from $Ala^{25}$ to $Val^{35}$, linked by a hinge region. In this study, we demonstrated that both peptides showed high antimicrobial activities against multi-drug resistant Gram negative bacteria as well as fungi. Interactions between these cecropin-like peptides and phospholipid membrane were studied using CD, dye leakage experiments, and NMR experiments, showing that both peptides have strong permeabilizing activities against bacterial cell membranes and fungal membranes as well as $Trp^2$ and $Phe^5$ at the N-terminal helix play an important role in attracting cecropin-like peptides to the negatively charged bacterial cell membrane. Cecropin-like peptides can be potent peptide antibiotics against multi-drug resistant Gram negative bacteria and fungi.

Purification and Characterization of 2,3-Dihydroxybiphenyl 1,2- Dioxygenase from Comamonas sp.

  • Lee Na Ri;Kwon Dae Young;Min Kyung Hee
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2001.11a
    • /
    • pp.16-25
    • /
    • 2001
  • A genomic library of biphenyl-degrading strain Comamonas sp. SMN4 was constructed by using the cosmid vector pWE15 and introduced into Escherichia coli. Of 1,000 recombinant clones tested, two clones that expressed 2,3-dihydroxybiphenyl 1,2-dioxygenase activity were found (named pNB 1 and pNB2). From pNB1 clone, subclone pNA210, demonstrated 2,3-dihydroxybiphenyl 1,2-dioxygenase activity, is isolated. 2,3-Dihydroxybiphenyl 1,2-dioxygenase (23DBDO, BphC) is an extradiol-type dioxygenase that involved in third step of biphenyl degradation pathway. The nucleotide sequence of the Comamonas sp. SMN4 gene bphC, which encodes 23DBDO, was cloned into a plasmid pQE30. The His-tagged 23DBDO produced by a recombinant Escherichia coli, SG 13009 (pREP4)(pNPC), and purified with a Ni-nitrilotriacetic acid resin affinity column using the His-bind Qiagen system. The His-tagged 23DBDO construction was active. SDS-PAGE analysis of the purified active 23DBDO gave a single band of 32 kDa; this is in agreement with the size of the bphC coding region. The 23DBDO exhibited maximum activity at pH 9.0. The CD data for the pHs, showed that this enzyme had a typical a-helical folding structures at neutral pHs ranged from pH 4.5 to pH 9.0. This structure maintained up to pH 10.5. However, this high stable folding strucure was converted to unfolded structure in acidic region (pH 2.5) or in high pH (pH 12.0). The result of CD spectra observed with pH effects on 23DBDO activity, suggested that charge transition by pH change have affected change of conformational structure for 23DBDO catalytic reaction. The $K_m$ for 2,3-dihydroxybiphenyl, 3-metylcatechol, 4-methylcatechol and catechol was 11.7 $\mu$M, 24 $\mu$M, 50 mM and 625 $\mu$M.

  • PDF

Structure-Antifungal Activity Relationships of Cecropin A-Magainin 2 and Cecropin A-Melittin Hybrid Peptides on Pathogenic Fungal Cells

  • Lee, Dong-Gun;Jin, Zhe-Zhu;Shin, Song-Yub;Kang, Joo-Hyun;Hahm, Kyung-Soo;Kim, Kil-Lyong
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.595-600
    • /
    • 1998
  • In order to investigate a relationship of the structure-antifungal and hemolytic activities between cecropin A(1-8)-magainin 2(1-12) and cecropin A(1-8)-melittin(1-12) hybrid peptides, several analogues with amino acid substitution at positions 10 (Ile) and 16 (Ser) were designed and synthesized. The increase of the hydrophobicity by substituting with Leu, Phe, and Trp at position 16 in cecropin A(1-8)-magainin 2(1-12) did not have a significant effect on antifungal activity but caused a remarkable increase in hemolytic activity. These results indicate that the hydrophobic property at position 16 of cecropin A(1-8)-magainin 2(1-12) is more correlated to hemolytic activity than to antifungal activity. Replacement with Pro at position 10 of cecropin A(1-8)- magainin 2(1-12) and cecropin A(1-8)-melittin (1-12) caused a remarkable decrease in a-helical contents in the 50% TFE solution and induced a reduction in lytic activity against Aspergillus flavus, and Aspergillus fumigatus. These results demonstrate that flexibility at the central hinge region is essential for lytic activity against fungal cells and $\alpha$-helicity of the peptides.

  • PDF

Solution Structure of a GSK 3$\beta$ Binding Motif, A $AXIN^{pep}$

  • Kim, Yong-Chul;Jung, JIn-Won;Park, Hee-Yong;Kim, Hyun-Yi;Lee, Weon-tae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.9 no.1
    • /
    • pp.38-47
    • /
    • 2005
  • Axin is a scaffold protein of the APC/axin/GSK complex, binding to all of the other signalling components. Axin interacts with Glycogen synthase kinase 3$\beta$ (GSK 3$\beta$) and functions as a negative regulator of Wnt signalling pathways. To determine the solution structure of the GSK3$\beta$ binding regions of the axin, we initiated NMR study of axin fragment comprising residues 3$Val^{388} - Arg^{401}$using circular dichroism (CD) and two-dimensional NMR spectroscopy. The CD spectra of 3$axin^{pep}$ in the presence of 30% TFE displayed a standard 3$\alpha$-helical conformation, exhibiting the bound structure of 3$axin^{pep}$ to GSK3$\bata$. On the basis of experimental restraints including $NOE_s$, and $^3J_{HN\alpha} $ coupling constants, the solution conformation of $axin^{pep}$ was determined with program CNS. The 20 lowest energy structures were selected out of 50 final simulated-annealing structures in both water and TFE environment, respectively. The $RMSD_s$ for the 20 structures in TFE solution were 0.086 nm for backbone atoms and 0.195 nm for all heavy atoms, respectively. The Ramachandran plot indicates that the $\varphi$, $\psi$ angles of the 20 final structures is properly distributed in energetically acceptable regions. $Axin^pep$ in aqueous solutions consists of a stable $\alpha$-helix spanning residues form $Glu^{391}$ to $Val^{391} $, which is an interacting motif with GSK3$\beta$.

  • PDF

Compression Test of Subelement and Tension Test of Hoop Ring for Stiffness Evaluation of Conical Composite Lattice Structures (콘형 복합재 격자 구조의 강성 평가를 위한 Subelement의 압축 시험 및 후프 링의 인장 시험)

  • Jeon, Min-Hyeok;Kong, Seung-Taek;No, Hae-Ri;Kim, In-Gul;Lee, Sang-Woo
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.169-175
    • /
    • 2020
  • The compression and tension test were performed to evaluate the stiffnesses of the conical composite lattice structures and results of test were compared with finite element analysis results. Because of difficulty to perform simple tension and compression test due to conical shape, suitable specimens and jig for test were made. Subelements extracted from the structure were prepared for compression test. Compression test of subelement was performed and compressive strains in fiber direction were measured. Compressive stiffness of the helical rib was verified by finite element analysis results. For stiffness of hoop rib, hoop ring specimens were extracted from the structure. Tension test of hoop ring specimen was performed to apply bending deformation to hoop rib. Stiffness of hoop rib was verified by finite element model considering various fiber volume fraction in thickness direction.