• 제목/요약/키워드: helical springs

검색결과 32건 처리시간 0.021초

압축 원통 코일 스프링의 선형 정적 구조 해석 오차에 관한 연구 (Study on the Linear Static Structural Analysis Error of Helical Compression Springs)

  • 장상찬;강정호
    • 대한기계학회논문집A
    • /
    • 제40권2호
    • /
    • pp.237-244
    • /
    • 2016
  • 산업에서 널리 사용되고 있는 압축 원통 코일 스프링은 제작 시 스프링 고유의 특성을 유지할 수 있는지 실험을 통해 검증해야 한다. 이 과정에서 많은 시간과 비용을 소비한다. 따라서 본 연구에서는 선형 정적 구조 해석 방법을 이용하여 스프링의 구조 건전성 평가를 수행하였다. 본 연구의 타당성을 입증할 목적으로 설계 규격 및 각종 국제적 평가 규격에 의한 실험적 방법과의 비교 및 검증을 수행하였다. 양 끝단 처리를 하지 않은 스프링 형상을 사용하여 구조 해석을 수행한 결과, 해석 모형 제작에 필요한 시간은 절감하고 격자의 질은 향상할 수 있었다. 푸아송 비는 구조 해석 결과에 별다른 영향을 미치지 않았다. 그리고 구조 해석만으로 스프링 구조 건전성을 검증할 수 있는 가능성을 확인하였다.

DESIGN OPTIMIZATION OF AUTOMOTIVE LOCK-UP CLUTCHES WITH DAMPER SPRINGS USING SIMULATED ANNEALING, FEM, AND B-SPLINE CURVES

  • Kim, C.;Yoon, J.W.
    • International Journal of Automotive Technology
    • /
    • 제8권5호
    • /
    • pp.599-603
    • /
    • 2007
  • An efficient optimum design process has been developed and applied to systematically design a lock-up clutch system for a torque converter used in an automatic transmission. A simulated annealing algorithm was applied to determine the parameters of the compressive helical damper springs in the clutch. The determination of the number, location, a number of turns, and deflection of damper springs plays an important role in reducing vibration and noise in the lock-up system. Next, FE-based shape optimization was coded to find the shape of the clutch disk that would satisfy the strength, noise and vibration requirements. Using the optimum code, parametric studies were performed to see how spring diameters and frequencies of clutch systems changed as the damper spring traveling angles and the torques were varied. Based on the optimum results, five different designs for clutches with different springs were fabricated and vibration analyses and tests were conducted to validate the accuracy of the proposed method. Results from the two methods show a good correlation.

Molar Uprighting Spring에 의해 발생되는 치조골내의 응력분포에 관한 광탄성학적 연구 (A PHOTOELASTIC STUDY OF THE STRESS DISTRIBUTION IN THE ALVEOLAR BONE BY VARIOUS MOLAR UPRIGHTING SPRINGS)

  • 최진휴;김종철
    • 대한치과교정학회지
    • /
    • 제21권2호
    • /
    • pp.353-366
    • /
    • 1991
  • This study was performed to analyze the effects of forces to the alveolar bone by various molar uprighting spring such as helical uprighting spring. T-loop spring, Modified T-loop spring and open coil spring. The simplified two-dimensional photoelastic model was constructed with a lower left posterior quadrant containing the second molar, the first and second premolars and the canine, with the first molar missing. Several molar uprighting springs were fabricated from 0.017 by 0.022 inch blue Elgiloy and applied to the photoelastic model. Two-dimensional photoelastic stress analysis was performed, and the stress distribution was recorded by photography The results obtained were as follows; 1. In all the kinds of the springs, the center of rotation of the mandibular second molar was oserved at the apical 1/5-1/6 between the alveolar crest and the root apex. 2. In all the kinds of the spring, the stress induced in the mesial root surface of the mandibular second molar was relatively homogeneous but there was some difference in the magnitude of the stress. 3. In the kinds of the springs, the distal crown tipping moment of the second molar was increased in turn as open coil spring, helical uprighting spring, T-loop spring, and modified T-loop spring. 4. The largest extrusive force was occured in the T-loop spring, intrusive force was occured in Modified T-loop spring only, and the largest distal tipping force was occured in open coil spring. 5. In the T-loop spring with activation, the stress induced in the mesial root surface of the second molar was increased gradually from the root apex to the alveolar crest and highly concentrated in the alveolar crest.

  • PDF

On the consideration of the masses of helical springs in damped combined systems consisting of two continua

  • Gurgoze, M.;Zeren, S.;Bicak, M.M.A.
    • Structural Engineering and Mechanics
    • /
    • 제28권2호
    • /
    • pp.167-188
    • /
    • 2008
  • This study is concerned with the establishment of the characteristic equation of a combined system consisting of a cantilever beam with a tip mass and an in-span visco-elastic helical spring-mass, considering the mass of the helical spring. After obtaining the "exact" characteristic equation of the combined system, by making use of a boundary value problem formulation, the characteristic equation is established via a transfer matrix method, as well. Further, the characteristic equation of a reduced system is obtained as a special case. Then, the characteristic equations are numerically solved for various combinations of the physical parameters. Further, comparison of the results with the massless spring case and the case in which the spring mass is partially considered, reveals the fact that neglecting or considering the mass of the spring partially can cause considerable errors for some combinations of the physical parameters of the system.

크랙을 갖는 헬리컬스프링의 자유진동해석 (Free Vibration Analysis of Helical Springs with Crack)

  • 김월태;이현승;이영신
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.963-968
    • /
    • 2004
  • Free vibration analysis of helical spring with crack was studied. Natural frequency changes due to the crack was analyzed with respect to crack locations. The effect of crack on natural frequency was decreased as crack location is further from the fixed end of a spring. The frequency change was larger in rectangular-shaped spring than that in circular-shaped spring. It was found that experiment may not be appropriate to determine the presence of crack because no significant natural frequency change can be shown by experiment.

  • PDF

Alternative approach for the derivation of an eigenvalue problem for a Bernoulli-Euler beam carrying a single in-span elastic rod with a tip-mounted mass

  • Gurgoze, Metin;Zeren, Serkan
    • Structural Engineering and Mechanics
    • /
    • 제53권6호
    • /
    • pp.1105-1126
    • /
    • 2015
  • Many vibrating mechanical systems from the real life are modeled as combined dynamical systems consisting of beams to which spring-mass secondary systems are attached. In most of the publications on this topic, masses of the helical springs are neglected. In a paper (Cha et al. 2008) published recently, the eigencharacteristics of an arbitrary supported Bernoulli-Euler beam with multiple in-span helical spring-mass systems were determined via the solution of the established eigenvalue problem, where the springs were modeled as axially vibrating rods. In the present article, the authors used the assumed modes method in the usual sense and obtained the equations of motion from Lagrange Equations and arrived at a generalized eigenvalue problem after applying a Galerkin procedure. The aim of the present paper is simply to show that one can arrive at the corresponding generalized eigenvalue problem by following a quite different way, namely, by using the so-called "characteristic force" method. Further, parametric investigations are carried out for two representative types of supporting conditions of the bending beam.

광점퍼코드 (OJC) 보호용 미소 직경 복합재료 스프링 개발 (A Development of Small-diameter Composite Helical Spring for Reinforcement of Optical Fiber Jumper Cord (OJC))

  • 윤영기;박성도;이연수;윤희석;이우일
    • Composites Research
    • /
    • 제15권4호
    • /
    • pp.17-22
    • /
    • 2002
  • 미세 직경을 갖는 복합재료 나선형 스프링 (CS)가 광점퍼코드 (OJC)를 보강하기위한 매체로써 개발되었다. 이 스프링의 외경은 약 2~3mm로써 광점퍼코드에 갑작스런 측면 하중으로 부터 광섬유의 손실을 막기위해 삽입 보강할 수 있도록 제작되었다. 섬유 형태 (Y-type)와 밴드 형태 (B-type)의 복합재료 스프링이 제작되어 그 효과를 비교하였다. 측면 하중에 대한 기계적 특성은 동일 직경의 금속 스프링 및 일반 광점퍼코드의 물성치와 비교하여 제시하였다. 실험 결과로부터 복합재료 스프링이 보강된 광점퍼코드의 경우 굽힘에 대한 높은 저항력을 지니고 있음에 따라 광섬유의 내부 손상에 의한 광 손실의 감소률이 낮음을 알 수 있었다 얻어진 주요 결과들은: (1) Y-type의 CS의 경우 B-type과 비교하여 높은 측압 저항력을 지님을 알 수 있었다 (2) 일반 OJC와 비교하여 CS-OJC의 경우 광 손실이 현격이 낮음을 알 수 있었다. (3) 일반 스프링의 측압 하중시의 응력 분포 형태를 제시하였으며. 실험으로부터 얻어진 결과로부터 복합재료 스프링이 보강된 광점퍼 코드의 경우 매우 높은 구조적 안정성을 보임을 알 수 있었다.

Base-isolated building with high-damping spring system subjected to near fault earthquakes

  • Tornello, Miguel Eduardo;Sarrazin, Mauricio
    • Earthquakes and Structures
    • /
    • 제3권3_4호
    • /
    • pp.315-340
    • /
    • 2012
  • There are many types of seismic isolation devices that are being used today for structural control of earthquake response in buildings. The most commonly used are sliding bearings and elastomeric bearings, the latter with or without lead core. An alternative solution is the use of steel springs combined with viscoelastic fluid dampers, which is the case discussed in this paper. An analytical study of a three-story building supported on helical steel springs and viscoelastic fluid dampers, GERB Control System (GCS), subjected to near-fault earthquakes is presented. Several earthquakes records have been obtained by the acceleration network installed in the isolated building and in its non-isolated twin since they were finished. These experimental results are analysed and discussed. The aim is to show that the spring-based system can be an alternative for base isolation of small building located near active faults.

형상기억합금을 이용한 초소형 액츄에이터 (Shape Memory Alloy Microactuators)

  • 김병욱;김광수;조동일
    • 한국정밀공학회지
    • /
    • 제13권9호
    • /
    • pp.54-61
    • /
    • 1996
  • Because of its high energy density, the use of shape memory alloys(SMA) in designing microactuatiors is gaining much attention in recent years. Shape memory alloys can undergo a shape change at a low temperature with a small applied deformation force, and retain this deformation until they are heated, at which point they return to the original shape. This is called the shape memory effect(SME), and a plethora of alloys show this effect. Among them, TiNi-based alloys have relatively high electrical resistivity, which to develope helical-shape memory springs. These springs are used to develop fast protatonist/antagonist configuration actuators. The developed actuator has an actuation speed of 1 mm per 15 .approx. 20 ms and a minimum operating period of 2 sec.

  • PDF

Free vibration analysis of a uniform beam carrying multiple spring-mass systems with masses of the springs considered

  • Wu, Jia-Jang
    • Structural Engineering and Mechanics
    • /
    • 제28권6호
    • /
    • pp.659-676
    • /
    • 2008
  • The reports regarding the free vibration analysis of uniform beams carrying single or multiple spring-mass systems are plenty, however, among which, those with inertia effect of the helical spring(s) considered are limited. In this paper, by taking the mass of the helical spring into consideration, the stiffness and mass matrices of a spring-mass system and an equivalent mass that may be used to replace the effect of a spring-mass system are derived. By means of the last element stiffness and mass matrices, the natural frequencies and mode shapes for a uniform cantilever beam carrying any number of springmass systems (or loaded beam) are determined using the conventional finite element method (FEM). Similarly, by means of the last equivalent mass, the natural frequencies and mode shapes of the same loaded beam are also determined using the presented equivalent mass method (EMM), where the cantilever beam elastically mounted by a number of lumped masses is replaced by the same beam rigidly attached by the same number of equivalent masses. Good agreement between the numerical results of FEM and those of EMM and/or those of the existing literature confirms the reliability of the presented approaches.