• Title/Summary/Keyword: height Accuracy

Search Result 739, Processing Time 0.023 seconds

Effect of Artificial Shade Treatment on the Growth and Biomass Production of Several Deciduous Tree Species (인공피음처리가 주요 활엽수종의 생장과 물질생산에 미치는 영향)

  • 최정호;권기원;정진철
    • Journal of Korea Foresty Energy
    • /
    • v.21 no.1
    • /
    • pp.65-75
    • /
    • 2002
  • The study was carried out to determine the growth and biomass production of major deciduous trees including Betula platyphylla var. japonica, Betula schmidtii, Zelkova serrata, Acer mono, Prunes sargentii, and Ligustrum obtusifolium subjected to artificial shade treatment in nursery field. The six deciduous trees seedlings grow for 2 years under different light intensity of 100%, 38-62%, 22-28%, 7-20%, and 2-6% of the full sun light intensity. The results were as follows; In the seedling heights and root collar diameters of shade intolerant species like Betula platyphylla var. japonica and Betula schmidtii, the relative growth rates of seedlings grown in full sun showed 2 times as compared with those subjected to the shade treatment of 2-6% light intensities of full sun. In the shade tolerant species like Acer mono ant Ligustrum obtusifolium, the growth performances were better in the seedlings grown in 38-62% light intensities of full sun. Total dry mass including the dry mass of leaves, shoot and root were as a whole decreased with shade treatment. The ratio of the dry mass of leaves and stem increased the dry mass of root. T/R ratio of the seedlings increased by decreasing the relative light intensity. And the T/R ratio of 2-6% light intensities of full sun was ranged from 1.1~5.0 were greater in the full sun light was ranged from 0.6~3.2. Light intensity by artificial shade treatment decreased in deciduous trees when compared on the whole, it showed tendency that SLA increases, increased that seeing resemblant tendency in LAR and LWR and changed of light intensity is strong, it increased that showed difference as statistical. But, LWR of Betula platyphylla var. japonica increased gradually and showed tendency that decreases rapidly in the shade treatment of 2-6% light intensities of full sun. This result is thought that biomass production decreased by shading treatment influenced in physiological characteristics such as leaf area and decrease of the leaf amount.

  • PDF

Study of Factors Controlling Exposure Dose and Image Quality of C-arm in Operation Room according to Detector Size of It (Mainly L-Spine AP Study) (수술 중 C-Arm Neutral AP 검사 시 조절인자에 따른 피폭선량 및 화질비교(L-Spine AP검사를 기준으로))

  • CHOI, Sung-Hyun;JO, Hwang-Woo;Dong, Kyung-Rae;Chung, Woon-Kwan;Choi, Eun-Jin;Song, Ha-jin
    • Journal of Radiation Industry
    • /
    • v.9 no.2
    • /
    • pp.85-90
    • /
    • 2015
  • Purpose: Time of operation has been reduced and accuracy of operation has been improved since C-arm, which offer real-time image of patient, was introduced in operation room. However, because of the contamination of patient, C-arm could not be used more appropriately. Therefore, this study is to know factors of controlling exposure dose, image quality and the exposed dose of health professional in operation room. Materials and methods: Height of Wilson frame (bed for operation) was fixed at 130 cm. Then, Model 76-2 Phantom, which was set by assembling manual of Fluke Company, was set on the bed. Head/Spine Fluoroscopy AEC mode was set for exposure condition. According to detector size of C-arm, the absorbed dose per min was measured in the 7 steps OFD (cm) from 10 cm to 40 cm (10, 15, 20, 25, 30, 35, 40 cm). In each step of OFD, the absorbed dose per min of same diameter of collimation was measured. Moreover, using Nero MAX Model 8000, exposure dose per min was measured according to 3 step of distance from detector (20 cm, 60 cm, 100 cm). Finally, resolution was measured by CDRH Disc Phantom and magnification of each OFD was measured by aluminum stick bar. Result: According to detector size of C-arm, difference of absorbed dose shows that the dose of 20 cm OFD is 1.750 times higher than the dose of 40 cm OFD. It means that the C-arm, which has smaller size of detector, shows the bigger difference of absorbed dose per min (p<0.05). In the difference of absorbed dose in the same step of OFD (from 20 cm to 40 cm), the absorbed dose of 9 inch detect or C-arm was 1.370 times higher than 12 inch' s (p<0.05). When OFD was set to 20 cm OFD, the absorbed dose of non-collimation case was approximately 0.816 times lower than the absorbed dose of collimation cases (p<0.05). When the distance was 20 cm from detector, exposed does includes first-ray and scatter-ray. When the distance was 60 cm and 100 cm from detector, exposed does includes just scatter-ray. So, there was the 2.200 times difference of absorbed does. Finally, when OFD was increased, spatial resolution was 4 to 5 step was increased. However, low contrast resolution was not relative. Moreover, there was 1.363 times difference of magnification (p<0.05). Conclusion: When C-Arm is used, avoiding contamination of patient is more important factor than reducing exposed dose of health professional in operation room. Just controlling exposure time is just way to reduce the exposed does of workers. However, in the case, non-probability influence could be occurred. Therefore, this study proved that the exposed dose will be reduced if the factors such as using small detector size of C-arm, setting OFD from 20 cm to 25 cm and non-collimating. Moreover, dose management of C-arm in the non-interesting area will be considered additionally.

Validation of Satellite Scatterometer Sea-Surface Wind Vectors (MetOp-A/B ASCAT) in the Korean Coastal Region (한반도 연안해역에서 인공위성 산란계(MetOp-A/B ASCAT) 해상풍 검증)

  • Kwak, Byeong-Dae;Park, Kyung-Ae;Woo, Hye-Jin;Kim, Hee-Young;Hong, Sung-Eun;Sohn, Eun-Ha
    • Journal of the Korean earth science society
    • /
    • v.42 no.5
    • /
    • pp.536-555
    • /
    • 2021
  • Sea-surface wind is an important variable in ocean-atmosphere interactions, leading to the changes in ocean surface currents and circulation, mixed layers, and heat flux. With the development of satellite technology, sea-surface winds data retrieved from scatterometer observation data have been used for various purposes. In a complex marine environment such as the Korean Peninsula coast, scatterometer-observed sea-surface wind is an important factor for analyzing ocean and atmospheric phenomena. Therefore, the validation results of wind accuracy can be used for diverse applications. In this study, the sea-surface winds derived from ASCAT (Advanced SCATterometer) mounted on MetOp-A/B (METeorological Operational Satellite-A/B) were validated compared to in-situ wind measurements at 16 marine buoy stations around the Korean Peninsula from January to December 2020. The buoy winds measured at a height of 4-5 m from the sea surface were converted to 10-m neutral winds using the LKB (Liu-Katsaros-Businger) model. The matchup procedure produced 5,544 and 10,051 collocation points for MetOp-A and MetOp-B, respectively. The root mean square errors (RMSE) were 1.36 and 1.28 m s-1, and bias errors amounted to 0.44 and 0.65 m s-1 for MetOp-A and MetOp-B, respectively. The wind directions of both scatterometers exhibited negative biases of -8.03° and -6.97° and RMSE values of 32.46° and 36.06° for MetOp-A and MetOp-B, respectively. These errors were likely associated with the stratification and dynamics of the marine-atmospheric boundary layer. In the seas around the Korean Peninsula, the sea-surface winds of the ASCAT tended to be more overestimated than the in-situ wind speeds, particularly at weak wind speeds. In addition, the closer the distance from the coast, the more the amplification of error. The present results could contribute to the development of a prediction model as improved input data and the understanding of air-sea interaction and impact of typhoons in the coastal regions around the Korean Peninsula.

Comparison of Wind Vectors Derived from GK2A with Aeolus/ALADIN (위성기반 GK2A의 대기운동벡터와 Aeolus/ALADIN 바람 비교)

  • Shin, Hyemin;Ahn, Myoung-Hwan;KIM, Jisoo;Lee, Sihye;Lee, Byung-Il
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1631-1645
    • /
    • 2021
  • This research aims to provide the characteristics of the world's first active lidar sensor Atmospheric Laser Doppler Instrument (ALADIN) wind data and Geostationary Korea Multi Purpose Satellite 2A (GK2A) Atmospheric Motion Vector (AMV) data by comparing two wind data. As a result of comparing the data from September 2019 to August 1, 2020, The total number of collocated data for the AMV (using IR channel) and Mie channel ALADIN data is 177,681 which gives the Root Mean Square Error (RMSE) of 3.73 m/s and the correlation coefficient is 0.98. For a more detailed analysis, Comparison result considering altitude and latitude, the Normalized Root Mean Squared Error (NRMSE) is 0.2-0.3 at most latitude bands. However, the upper and middle layers in the lower latitudes and the lower layer in the southern hemispheric are larger than 0.4 at specific latitudes. These results are the same for the water vapor channel and the visible channel regardless of the season, and the channel-specific and seasonal characteristics do not appear prominently. Furthermore, as a result of analyzing the distribution of clouds in the latitude band with a large difference between the two wind data, Cirrus or cumulus clouds, which can lower the accuracy of height assignment of AMV, are distributed more than at other latitude bands. Accordingly, it is suggested that ALADIN wind data in the southern hemisphere and low latitude band, where the error of the AMV is large, can have a positive effect on the numerical forecast model.

Evaluation of Standing Tree Characteristics by Development of the Criteria on Grading Hardwood Quality for Oaks Forests in Central Region of Korea (활엽수 입목형질등급 기준 개발을 통한 중부지역 참나무림의 입목특성 평가)

  • Lee, Young Geun;Lee, Sang Tae;Chung, Sang Hoon
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.4
    • /
    • pp.344-350
    • /
    • 2018
  • This study was carried out to improve the forest management method considering the use of high value added timber in the natural broadleaf forests. For this purpose, the criteria for evaluating the quality grade of standing trees were established and applied to the oak stand in the central region of Korea. The evaluation factors of the grade were bending of stem, branch, stem damage, and other defects. If the logs are divided into 2.1 m units and three logs up to 6.3 m are available, they are classified as Grade I (G-I). If two logs are available, they are classified as Grade II (G-II), If only one log is available, it is classified as Grade III (G-III). When any log is not available as timber, it is classified as Grade IV (G-IV). As a result of applying the grade to the oak stand, G-I was 6.7 %, G-II was 28.0 %, G-III was 38.3 %, and G-IV was 27.0 %. The ratio of standing trees by oak species of higher than G-III was 88.2 % for Quercus acutissima, 88.1 % for Q. variabilis, 83.5 % for Q. serrata, 56.3 % for Q. aliena, and 50.3 % for Q. mongolica, respectively. The G-IV ratio for Q. variabilis and Q. mongolica tended to decrease with increasing diameter at breast height. The order of major defect affecting the grading level was bending of stem > branch > stem damage > other defects. Considering the grade level and oak species distribution, it was concluded possible to produce high quality hardwood timber when we concentrate forest tending techniques on Q. acutissima and Q. variabilis stand. In order to improve the accuracy of grading, it is necessary to continuous complement through the monitoring research for evaluation factors.

Development of a Retrieval Algorithm for Adjustment of Satellite-viewed Cloudiness (위성관측운량 보정을 위한 알고리즘의 개발)

  • Son, Jiyoung;Lee, Yoon-Kyoung;Choi, Yong-Sang;Ok, Jung;Kim, Hye-Sil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.3
    • /
    • pp.415-431
    • /
    • 2019
  • The satellite-viewed cloudiness, a ratio of cloudy pixels to total pixels ($C_{sat,\;prev}$), inevitably differs from the "ground-viewed" cloudiness ($C_{grd}$) due to different viewpoints. Here we develop an algorithm to retrieve the satellite-viewed, but adjusted cloudiness to $C_{grd} (C_{sat,\;adj})$. The key process of the algorithm is to convert the cloudiness projected on the plane surface into the cloudiness on the celestial hemisphere from the observer. For this conversion, the supplementary satellite retrievals such as cloud detection and cloud top pressure are used as they provide locations of cloudy pixels and cloud base height information, respectively. The algorithm is tested for Himawari-8 level 1B data. The $C_{sat,\;adj}$ and $C_{sat,\;prev}$ are retrieved and validated with $C_{grd}$ of SYNOP station over Korea (22 stations) and China (724 stations) during only daytime for the first seven days of every month from July 2016 to June 2017. As results, the mean error of $C_{sat,\;adj}$ (0.61) is less that than that of $C_{sat,\;prev}$ (1.01). The percent of detection for 'Cloudy' scenario of $C_{sat,\;adj}$ (73%) is higher than that of $C_{sat,\;prev}$ (60%) The percent of correction, the accuracy, of $C_{sat,\;adj}$ is 61%, while that of $C_{sat,\;prev}$ is 55% for all seasons. For the December-January-February period when cloudy pixels are readily overestimated, the proportion of correction of $C_{sat,\;adj$ is 60%, while that of $C_{sat,\;prev}$ is 56%. Therefore, we conclude that the present algorithm can effectively get the satellite cloudiness near to the ground-viewed cloudiness.

Development of Stand Yield Table Based on Current Growth Characteristics of Chamaecyparis obtusa Stands (현실임분 생장특성에 의한 편백 임분수확표 개발)

  • Jung, Su Young;Lee, Kwang Soo;Lee, Ho Sang;Ji Bae, Eun;Park, Jun Hyung;Ko, Chi-Ung
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.4
    • /
    • pp.477-483
    • /
    • 2020
  • We constructed a stand yield table for Chamaecyparis obtusa based on data from an actual forest. The previous stand yield table had a number of disadvantages because it was based on actual forest information. In the present study we used data from more than 200 sampling plots in a stand of Chamaecyparis obtusa. The analysis included theestimation, recovery and prediction of the distribution of values for diameter at breast height (DBH), and the result is a valuable process for the preparation ofstand yield tables. The DBH distribution model uses a Weibull function, and the site index (base age: 30 years), the standard for assessing forest productivity, was derived using the Chapman-Richards formula. Several estimation formulas for the preparation of the stand yield table were considered for the fitness index, and the optimal formula was chosen. The analysis shows that the site index is in the range of 10 to 18 in the Chamaecyparis obtusa stand. The estimated stand volume of each sample plot was found to have an accuracy of 62%. According to the residuals analysis, the stands showed even distribution around zero, which indicates that the results are useful in the field. Comparing the table constructed in this study to the existing stand yield table, we found that our table yielded comparatively higher values for growth. This is probably because the existing analysis data used a small amount of research data that did not properly reflect. We hope that the stand yield table of Chamaecyparis obtusa, a representative species of southern regions, will be widely used for forest management. As these forests stabilize and growth progresses, we plan to construct an additional yield table applicable to the production of developed stands.

Characteristics and Quality Control of Precipitable Water Vapor Measured by G-band (183 GHz) Water Vapor Radiometer (G-band (183 GHz) 수증기 라디오미터의 가강수량 특성과 품질 관리)

  • Kim, Min-Seong;Koo, Tae-Young;Kim, Ji-Hyoung;Jung, Sueng-Pil;Kim, Bu-Yo;Kwon, Byung Hyuk;Lee, Kwangjae;Kang, Myeonghun;Yang, Jiwhi;Lee, ChulKyu
    • Journal of the Korean earth science society
    • /
    • v.43 no.2
    • /
    • pp.239-252
    • /
    • 2022
  • Quality control methods for the first G-band vapor radiometer (GVR) mounted on a weather aircraft in Korea were developed using the GVR Precipitable Water Vapor (PWV). The aircraft attitude information (degree of pitch and roll) was applied to quality control to select the shortest vertical path of the GVR beam. In addition, quality control was applied to remove a GVR PWV ≥20 mm. It was found that the difference between the warm load average power and sky load average power converged to near 0 when the GVR PWV increased to 20 mm or higher. This could be due to the high brightness temperature of the substratus and mesoclouds, which was confirmed by the Communication, Ocean and Meteorological Satellite (COMS) data (cloud type, cloud top height, and cloud amount), cloud combination probe (CCP), and precipitation imaging probe (PIP). The GVR PWV before and after the application of quality control on a cloudy day was quantitatively compared with that of a local data assimilation and prediction system (LDAPS). The Root Mean Square Difference (RMSD) decreased from 2.9 to 1.8 mm and the RMSD with Korea Local Analysis and Precipitation System (KLAPS) decreased from 5.4 to 4.3 mm, showing improved accuracy. In addition, the quality control effectiveness of GVR PWV suggested in this study was verified through comparison with the COMS PWV by using the GVR PWV applied with quality control and the dropsonde PWV.

The Benefit of KT-2000 Knee Ligament Arthrometer in Diagnosis of Anterior Cruciate Ligament Injury (슬관절 전방 십자 인대 파열의 진단에 있어서 KT-2000 기기의 유용성)

  • Park, Jai-Hyung;Kim, Hyoung-Soo;Jung, Kwang-Gyu;Yoo, Jeong-Hyun
    • Journal of the Korean Arthroscopy Society
    • /
    • v.8 no.2
    • /
    • pp.82-88
    • /
    • 2004
  • Purpose: In this study, we intended to ascertain the benefit of KT-2000 Knee arthrometer(KT-2000) in the diagnosis of ACL(Anterior cruciate ligament) injury by comparing the anterior displacement of normal knee with that of ACL deficient knee. Materials and Methods: We designated two examiners to measure the anterior displacement of the knee joint of 30 healthy individuals, using KT-2000, at 30$^{\circ}$ flexion setting of muscle full relaxation, contraction, 25$^{\circ}$ internal rotation and 25$^{\circ}$ external rotation and analyzed these results according to the variables and measured the preoperative anterior displacement of the ACL injured knee in the 30 patients who have gone through an arthroscopic ACL reconstruction later. Results: The results of examiner 1 are 6.5${\pm}$1.5 mm, 2.5${\pm}$0.9 mm, 4.8${\pm}$1.2 mm, 6.4${\pm}$1.3 mm in right knee and 5.6${\pm}$1.3 mm, 2.1${\pm}$0.8 mm, 4.5${\pm}$1.2 mm, 5.2${\pm}$1.3 mm in left knee, in order of muscle full relaxation, contraction, 25$^{\circ}$ internal rotation and 25$^{\circ}$ external rotation. The results of examiner 2 are 6.9${\pm}$1.2mm, 2.9${\pm}$1.1mm, 5.6${\pm}$1.6mm, 6.9${\pm}$1.5mm in right, 5.5${\pm}$1.7 mm,1.9${\pm}$0.9 mm, 5.1${\pm}$1.9 mm, 5.7${\pm}$1.6 mm in left knee, The side to side difference of examiner 1 in the setting of muscle relaxation is 0.9${\pm}$1.0 mm. The anterior displaement of ACL injured knee is average 11${\pm}$2.93 mm and difference of average 6.5${\pm}$2.31 mm form that of normal. In comparison between the right and left knees of healthy individuals, the both results of two examiners showed the statistical difference in the setting of muscle full relaxation but, the results showed the side to side difference below 2 mm in 25case(83%), 21case(70%) respectively and above 3 mm in just 1 case. In the comparison between the normal and ACL injured knees, the results show the statistical difference of the side to side difference in the setting of muscle relaxation(p<0.05). Conclusion: The KT-2000 result is affected by relaxation of muscles around knee, flexion angle of knee joint, rotation of tibia, the strength of displacing force, time of the test and physical factors as height and weight. However, the Accuracy of diagnosis of ACL injury by KT-2000 will increase if the examiner is skillful and the tests are made on the exact position of knee joint.

  • PDF