• Title/Summary/Keyword: heavy rainfalls

Search Result 102, Processing Time 0.025 seconds

A Case Study on Characteristics of Landslides in Natural Slopes (자연사면 산사태 특성에 관한 사례 연구)

  • Yoo, Nam-Jae;Jun, Sang-Hyun;Park, Nam-Sun
    • Journal of Industrial Technology
    • /
    • v.27 no.B
    • /
    • pp.193-199
    • /
    • 2007
  • This paper is a result of a case study about landslides at Whacheon area in Kangwondo occurred during heavy rainfall in 2006. A-day-accumulative rainfalls from July 12 to July 13 and July 15 to July 16 were 120mm and 110mm respectively. Five sites at which slope failures occurred were visited to figure out main causes of slope failures by investigating characteristics of rainfall, geological formation, topography and ground surface exploration around the boundary of the landslides. Based on the site investigation characteristics of landslide with respect to rainfall pattern, geological and topographical condition and pattern of landslide were evaluated.

  • PDF

The Characteristics of Heavy Rainfall over the Korean Peninsular - Case Studies of Heavy Rainfall Events during the On- and Off- Changma Season- (장마기와 장마 후의 한반도 집중호우 특성 사례분석)

  • Chung, Hyo-Sang;Chung, Yun-Ang;Kim, Chang-Mo;Ryu, Chan-Su
    • Journal of Environmental Science International
    • /
    • v.21 no.12
    • /
    • pp.1511-1521
    • /
    • 2012
  • An attempt is made to analyse characteristic features of heavy rainfalls which occur at the metropolitan area of the Korean peninsular the on- and off- Changma season. For this, two representative heavy rainfall episodes are selected; one is the on-Changma season wherein a torrential rain episode happened at Goyang city on 12 July 2006, and the other is the off-Changma season, a heavy rainfall event in Seoul on 21 September 2006. Both recorded considerable amounts of precipitation, over 250mm in a half-day, which greatly exceeded the amount expected by numerical prediction models at those times, and caused great damage to property and life in the affected area. Similarities in the characteristics of both episodes were shown by; the location of upper-level jet streak and divergence fields of the upper wind over heavy rainfall areas, significantly high equivalent potential temperatures in the low atmospheric layer due to the entrainment of hot and humid air by the low-level jet, and the existence of very dry air and cold air pool in the middle layer of the atmosphere at the peak time of the rainfall events. Among them, differences in dynamic features of the low-level jet and the position of rainfall area along the low-level jet are remarkable.

Numerical Case Study of Heavy Rainfall Occurred in the Central Korean Peninsula on July 26-28, 1996

  • Kim, Young-Ah;Oh, Jai-Ho
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.26 no.1
    • /
    • pp.15-29
    • /
    • 1998
  • The numerical simulation of heavy precipitation event occurred in the central Korean Peninsula on July 26-28, 1996 was performed using the fine mesh model. ARPS (Advanced Regional Prediction System) developed by the CAPS (Center for Analysis and Prediction of Storms). Usually, the heavy rainfalls occurred at late July in the Korean Peninsula were difficult to predict, and showed very strong rainfall intensity. As results, they caused a great loss of life and property. As it usual, this case was unsuccessful to predict the location of rain band and the precipitation intensity with the coarse-mesh model. The same case was, however, simulated well with fine-mesh storm-scale model, ARPS. Moisture band at 850 hPa appeared along the Changma Front in the area of China through central Korea passed Yellow Sea. Also the low-level jet at 700 hPa existed in the Yellow Sea through central Korea and they together offered favorable condition to induce heavy rainfall in that area. The convective activities developed to a meso-scale convective system were observed at near the Yangtze River and moved to the central Korean Peninsula. Furthermore, the intrusion of warm and moist air, origninated from typhoon, into the Asia Continent might result in heavy rainfall formation through redistribution of moisture and heat. In the vertical circulation, the heavy rainfall was formed between the upper- and low-level jets, especially, the entrance region of the upper-level jet above the exit the region of the low-level jet. The low level convergence, the upper level divergence and the strong vertical wind were organized to the very north of the low level jet and concentrated on tens to hundreds km horizontal distance. These result represent the upper- and low-level jets are one of the most important reasons on the formation of heavy precipitation.

  • PDF

A Study of Convective Band with Heavy Rainfall Occurred in Honam Region

  • Moon, Tae-Su;Ryu, Chan-Su
    • Journal of Environmental Science International
    • /
    • v.24 no.5
    • /
    • pp.601-613
    • /
    • 2015
  • On the study of the characteristics and life cycle of mesoscale convective band in type of airmass that occurred in the Honam area from June to September for only 4 years in the period of 2009~2012, 10 examples based on the amount of rainfall with AWS 24 hours/60 minutes rainfalls, Mt. Osung radar 1.5 km CAPPI/X-SECT images and KLAPS data for convective band with heavy rainfall event were selected. There were analyzed and classified by using the convective band with heavy rainfall occurred along the convergence line of sea wind in the form of individual multi-cellular cell and moving direction of convective band appeared in a variety of patterns; toward southwestern (2 cases), northeastern (4 cases), congesting (2 cases), and changing its moving direction (2 cases). The case study dated of the 17th Aug. 2012 was chosen and implemented by sequentially different evolution of its shape along the convergence line of sea wind cell and moving direction of convective band as equivalent potential temperatures at the lower layer have increased to the upper layer 500 hPa, that the individual cells were developed vertically and horizontally through their merger, but owing to divergence caused by weakened rainfall and descending air current, the growth of new cell was inhibited resulting in dissipation of convective cells.

Characteristics of Natural Disaster in North Korea (북한의 자연재해 현황 및 특성)

  • Park, So-Yeon;Kim, Baek-Jo;Ahn, Suk-Hee
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.3
    • /
    • pp.21-29
    • /
    • 2010
  • In this study, characteristics of natural disaster and damage in North Korea are examined by using CRED(Centre for Research on the Epidemiology of Disasters) data from 1980 to 2008. Result shows that most natural disasters are caused by summertime typhoon and floods with typical floods of 1995 and 2007. Also, synoptic weather condition associated with heavy rainfall in North Korea is analyzed by using satellite image and weather chart provided by JMA(Japan Meteorological Agency). The heavy rainfalls associated with flood in North Korea are mainly related to the effect of Changma front, abrupt development of southeastward moving low over Yellow Sea, convective instability at the edge of North Pacific high and passage of weakened tropical cyclone(typhoon).

A Bayesian Prediction of the Generalized Pareto Model (일반화 파레토 모형에서의 베이지안 예측)

  • Huh, Pan;Sohn, Joong Kweon
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.1069-1076
    • /
    • 2014
  • Rainfall weather patterns have changed due to global warming and sudden heavy rainfalls have become more frequent. Economic loss due to heavy rainfall has increased. We study the generalized Pareto distribution for modelling rainfall in Seoul based on data from 1973 to 2008. We use several priors including Jeffrey's noninformative prior and Gibbs sampling method to derive Bayesian posterior predictive distributions. The probability of heavy rainfall has increased over the last ten years based on estimated posterior predictive distribution.

A Study on Disaster and Recovery of Landslides at Inje Province in Korea (2006년 발생한 강원도 인제군의 산사태 피해 및 복구에 관한 연구)

  • Lee, Cheol-Ju;Park, Eun-Soo;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.29 no.A
    • /
    • pp.9-17
    • /
    • 2009
  • The main purpose of this work is to analyse damages caused by debris flows during the heavy rainfall at Inje province in Kangwondo, Korea. A series of site investigations have been performed to survey the characteristics of debris flows occurred during the summer season of 2006. It has been found that major losses and costs are triggered by discharge of soil and rock fragments from landslides. During the rainfall unexpectedly high precipitation rate of 113.5mm/hour and 355mm/day was recorded, which could happen at a 80-500 year period. Comparing the period of the rainfall with the time of the landslides, it has been found that the occurrence of the landslides is directly related to heavy rainfalls. At present, several debris barriers have been built at the valleys and natural slopes have been protected by the seed spray method. It is intended to propose an appropriate solutions of restoration of landslide damages and maintenance based on findings from the current study.

  • PDF

Analyzed Change of Soil Characteristics by Rainfall and Vegetation (강우 및 식생에 의한 토질특성 변화 분석)

  • Lee, Moon-Se;Kim, Kyeong-Su;Song, Young-Suk;Ryu, Je-Cheon
    • The Journal of Engineering Geology
    • /
    • v.19 no.1
    • /
    • pp.33-41
    • /
    • 2009
  • In this study, some changes of soil characteristics in a field were analyzed to investigate the effect of heavy rainfall during rainy season. The heavy rainfalls were often induced geohazards like landslides. To do this, the reaching rainfall in the ground surface was investigated according to a condition of vegetation, and the change of soil characteristics induced by infiltrating rainfall was analyzed. The study site is a natural terrain located in Daedeok Science Complex. This site has same geology and soil condition whereas it has different vegetable condition. The rainfall records during the rainy season of 2006 and 2007 were selected. The rainfall records are based on the measuring date from Daejeon Regional Meteorological Administration adjacent to the study site. Also, the rainfall records according to the condition of vegetation were measured using rainfall measuring device made by ourselves. The soil tests were carried out about soil specimen sampled before and after rainfall, and then the change of soil characteristics related to rainfall and vegetation were analyzed. As the result, the density of vegetation was influenced by reaching rainfall quantity in the ground surface, and its influence intensity was decreased with rainfall intensity and rainfall duration. Also, it shows that degree of saturations, water contents, liquidities and shear resistances are directly influenced by heavy rainfalls.

On the Relation Between Cloud-to-Ground Lightning and Rainfall During 2006 and 2007 Summer Cases (2006-2007년 여름 사례로 본 구름-지면 낙뢰와 강우의 관계)

  • Oh, Seok-Geun;Suh, Myoung-Seok;Lee, Yun-Jeong
    • Journal of the Korean earth science society
    • /
    • v.31 no.7
    • /
    • pp.749-761
    • /
    • 2010
  • A relationship between cloud-to-ground lightning and rainfall was investigated by using the two-years (2006-2007) summer lightning data and the automatic weather stations (AWSs) data of the Korea Meteorological Administration. The negative lightning occurred at the core of highly concentrated convection, which is often accompanied with heavy rains. Whereas most positive lightning occurred at the anvil cloud with low density and light rains. The rainfall intensity is strongest when the negative and positive lightning occurred concurrently, and one with lightning is much stronger than that without lightning. A portion of the positive lightning of the total lightning was less than 10% during summer seasons, and the lightning without rains was about 34%. The rain rate was strongly correlated with the negative flash rate, and the correlation coefficients varied between 0.87 and 0.94 according to the co-location radius (5-15 km) of AWSs. Most of the lightning occurred 10 minutes before and/or concurrently occurred with rains. A portion of the convective rainfalls of the total rainfalls was at least 20% when we define the rainfalls with lightning as convective. The convective rainfall was greater during August than in June and July. In general, the portion of convective rainfalls showed a maximum diurnal variation during late afternoon as in the rains and lightning.

Estimation of Design Flood for the Gyeryong Reservoir Watershed based on RCP scenarios (RCP 시나리오에 따른 계룡저수지 유역의 설계홍수량 산정)

  • Ryu, Jeong Hoon;Kang, Moon Seong;Song, Inhong;Park, Jihoon;Song, Jung-Hun;Jun, Sang Min;Kim, Kyeung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.1
    • /
    • pp.47-57
    • /
    • 2015
  • Along with climate change, the occurrence and severity of natural disasters have been increased globally. In particular, the increase of localized heavy rainfalls have caused severe flood damage. Thus, it is needed to consider climate change into the estimation of design flood, a principal design factor. The main objective of this study was to estimate design floods for an agricultural reservoir watershed based on the RCP (Representative Concentration Pathways) scenarios. Gyeryong Reservoir located in the Geum River watershed was selected as the study area. Precipitation data of the past 30 years (1981~2010; 1995s) were collected from the Daejeon meteorological station. Future precipitation data based on RCP2.6, 4.5, 6.0, 8.5 scenarios were also obtained and corrected their bias using the quantile mapping method. Probability rainfalls of 200-year frequency and PMPs were calculated for three different future spans, i.e. 2011~2040; 2025s, 2041~2070; 2055s, 2071~2100; 2085s. Design floods for different probability rainfalls were calculated using HEC-HMS. As the result, future probability rainfalls increased by 9.5 %, 7.8 % and 22.0 %, also design floods increased by 20.7 %, 5.0 % and 26.9 %, respectively, as compared to the past 1995s and tend to increase over those of 1995s. RCP4.5 scenario, especially, resulted in the greatest increase in design floods, 37.3 %, 36.5 % and 47.1 %, respectively, as compared to the past 1995s. The study findings are expected to be used as a basis to reduce damage caused by climate change and to establish adaptation policies in the future.