• Title/Summary/Keyword: heavy metals removal

Search Result 503, Processing Time 0.03 seconds

Comparions of Removal Performances of Divalent Heavy Metals by Natural and Pretreated Zeolites (천연 및 전처리 제올라이트에 의한 2가 중금속 이온 제거능의 비교.검토)

  • 감상규;김덕수;이민규
    • Journal of Environmental Science International
    • /
    • v.8 no.3
    • /
    • pp.399-409
    • /
    • 1999
  • The three domestic natural zeolites(Yong dong-ri (Y), Daesin-ri (D), Seogdong-ri (S)) harvested in Kyeongju-shi and Pohang-shi, Kyungsangbug-Do, were pretreatd with each of the NaOH, $Ca(OH)_2$ and NaOH following HCl solutions, and the removal performances of divalent haevy metals(Cu, Mn, Pb, and Sr) for natural and pretreated zeolites were investigated and compared in the single and mixed solutions. The natural zeolite-heavy metal system attained the final equilibrium plateau within 20 min, irrespective of initial heavy metal concentration. The heavy metal uptakes increased with increasing initial heavy metal concentration and pH. The heavy metal uptakes for natural zeolites decreased in the following sequences : D>Y>S among the natural zeolites; Pb>Cu>Sr>Mn among the heavy metals. The pretreated zeolites showed higher heavy metal removal performances than natural zeolites and decreased in the order of NaOH, NaOH following HCl, $Ca(OH)_2$ treatment among the pretreatment methods. The heavy metal ion exchange capacity by natural and pretreated zeolites was described either by Freundlich equation or Langmuir equation, but it followed the former better than the latter. The heavy metal uptakes for natural zeolites decreased in the mixed solution, in comparing with those in the single solution and especially, the manganese uptake decreased greatly in the mixed solution. The pretreated zeolites showed the improved removal performances of heavy metals in the mixed solution than in the single solution and the heavy metal uptakes by those in the mixed solution showed the same trends in the single solution among the chemical treatment methods and heavy metals.

  • PDF

Quantifying the Interactive Inhibitory Effect of Heavy Metals on the Growth and Phosphorus Removal of Pseudomonas taeanensis

  • Yoo, Jin;Kim, Deok-Hyun;Oh, Eun-Ji;Chung, Keun-Yook
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.51 no.1
    • /
    • pp.35-49
    • /
    • 2018
  • This study was initiated to quantitatively evaluate the effects of five heavy metals (Cd, Cu, Zn, Pb, and Ni) on growth and P removal efficiencies of Pseudomonastaeanensis, known as the phosphorus accumulating microorganism. The heavy metals were added individually and with the binary mixture to the batch culturing system of Pseudomonastaeanensis. $IC_{50}$ and $EC_{50}$ were used to quantitatively evaluate their effects on the growth and phosphorus removal efficiency of Pseudomonas taeanensis in those treatments. Additionally, additive index value method was used to evaluate the interactive effects of heavy metals for Pseudomonas taeanensis in this study. As those heavy metals were singly added to Pseudomonastaeanensis, the greatest inhibitory effect on its growth and P removal efficiency was observed in Cd, whereas, the smallest effect was found in Ni. As the concentrations of all heavy metals added were gradually increased, its growth and P removal efficiency was correspondingly decreased. Specifically, $IC_{50}$ of Pseudomonas taeanensis for Cd, Cu, Zn, Pb, and Ni were $0.44mg\;L^{-1}$, $5.12mg\;L^{-1}$, $7.46mg\;L^{-1}$, $8.37mg\;L^{-1}$ and $14.56mg\;L^{-1}$, respectively. The P removal efficiency of Pseudomonas taeanensis was 81.1%. $EC_{50}$ values of Pseudomonas taeanensis for Cd, Cu, Zn, Pb, and Ni were $0.44mg\;L^{-1}$, $4.08mg\;L^{-1}$, $7.17mg\;L^{-1}$, $8.90mg\;L^{-1}$ and $11.26mg\;L^{-1}$, respectively. In the binary treatments of heavy metals, the lowest $IC_{50}$ and $EC_{50}$ were found in the Cd + Cu treatment, whereas, the highest $IC_{50}$ and $EC_{50}$ were found in the Zn + Pb and Pb + Ni treatments, respectively. Most of the interactive effects for the binary mixture treatments of heavy metals were antagonistic. Based on the results obtained from this study, it appears that they could provide the basic information about the toxic effects of the respective individual and binary treatments of heavy metals on the growth and P removal efficiency of other phosphorus accumulating organisms.

Effect of the Various Heavy Metals on the Growth and Phosphorus (P) Removal Capacity of the Phosphorus Accumulating Microorganism (Pseudomonas sp.) (다양한 중금속이 인 축적 미생물 (Pseudomonas sp.)의 생장과 인 제거에 대한 효과)

  • Kim, Hee-Jung;Yoo, Ri-Bi;Han, Seok-Soon;Woo, Sun-Hee;Lee, Moon-Soon;Baek, Ki-Tae;Chung, Keun-Yook
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.2
    • /
    • pp.189-196
    • /
    • 2010
  • The removal of phosphorus (P) in the wastewater is essential for the prevention of eutrophication in the river and stream. This study was initiated to evaluate the effect of the various heavy metals on the growth and P removal capacity of Pseudomonas sp., which was well known as phosphorus accumulating microorganism(PAO's) in the EBPR(Enhanced Biological Phosphorus Removal) process. The five heavy metals used in the study were Cu, As, Zn, Ni, and Cd. The growth rate of Pseudomonas sp. was the greatest at $25^{\circ}C$, but the removal efficiency of P was the highest at $30^{\circ}C$. The $IC_{50}$ (median Inhibition Concentration) values of Pseudomonas sp. for the Cu, As, Zn, Ni, and Cd were 2.35, 11.04, 1.80, 4.92, and 0.24 mg/L, respectively. Therefore, it appears that the sensitivity of the heavy metals to Pseudomonas sp. was in the following order: Cd> Zn> Cu> Ni> AS. Also, the P removal efficiencies by Pseudomonas sp. were correspondingly decreased as the concentrations of heavy metals were increased.

Removal of Heavy Metals from Acid Mine Drainage Using Sulfate Reducing Bacteria (황산염환원균을 이용한 폐광폐수의 중금속 제거)

  • Paik, Byeong Cheon;Kim, Kwang Bok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.2
    • /
    • pp.47-54
    • /
    • 1999
  • SRB(Sulfate Reducing Bacteria) converts sulfate into sulfide using an organic carbon source as the electron donor. The sulfide formed precipitates the various metals present in the AMD (Acid Mine Drainage). This study is the fundamental research on heavy metal removal from AMD using SRB. Two completely mixed anaerobic reactors were operated for cultivation of SRB at the temperature of $30^{\circ}C$ and anaerobic batch reactors were used to evaluate the effects of carbon source, COD/sulfate($SO_4^=$) ratio and alkalinity on sulfate reduction rate and heavy metal removal efficiency. AMD used in this study was characterized by low pH 3.0 and 1000mg/l of sulfate and dissolved high concentration of heavy metals such as iron, cadmium, copper, zinc and lead. It was found that glucose was an organic carbon source better than acetate as the electron donor of SRB for sulfate reduction in AMD. Amount of sulfate reduction maximized at the COD(glucose)/sulfate ratio of 0.5 in the influent and then removal efficiencies of heavy metals were 97.5% of Cu, 100% of Pb, 100% of Cr, 49% of Mn, 98% of Zn, 100% Cd and 92.4% of Fe. Although sulfate reduction results in an increase in the alkalinity of the reactor, alkalinity of 1000mg/1 (as $CaCo_3$) should be should be added continuously to the anaerobic reactor in order to remove heavy metals from AMD.

  • PDF

Removal of Heavy Metals from Aqueous Solution by Fly Ash

  • Cho, Hee-Chan;Oh, Dal-Young
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.494-499
    • /
    • 2001
  • The present work investigates the possible use of fly ash for the removal of heavy metal ions from aqueous solutions. Batch experiments were conducted and the influences of metal concentration, pH, and fly ash concentration were investigated. Heavy metals used in these studies were zinc, lead and cadmium. Adsorption studies were done over a range of pH values (3-10) at $25^{\circ}C$ and heavy metal concentrations of 10-400 mg/L using fly ash concentrations of 10, 20 and 40 g/L. Experiments were also conducted without fly ash to determine the extent of heavy metal removal by precipitation. Kinetic and equilibrium experiments were performed and adsorption data were correlated with both Langmuir and Freundlich adsorption models. The results indicate that fly ash can be used as an adsorbent for heavy metals in the aqueous solutions, yet the degree of removal depends on the pH.

  • PDF

Removal Characteristics of TPHs and Heavy Metals in Contaminated Soil with Ultrasonic Washing (초음파세척을 이용한 오염토양 내 TPHs 및 중금속 제거특성)

  • Jung, Byung-Gil;Ro, Gi-Hyun;Sung, Nak-Chang
    • Journal of Environmental Science International
    • /
    • v.18 no.4
    • /
    • pp.473-478
    • /
    • 2009
  • The removal characteristics of total petroleum hydrocarbons (TPHs) and heavy metals in contaminated soils with ultrasonic washing have been studied. The ultrasonic washing was evaluated on a laboratory scale. In this investigation, the effects of factors such as ultrasonic frequency, power intensity, duration of irradiation, contents of the TPHs and heavy metals and mixing ratios between the contaminated soils and water, were considered. Experimental results suggested that the rates for contaminant extraction of the TPHs and heavy metals in the contaminated soil increased considerably with the ultrasonic washing. Therefore, the ultrasonic washing has previously been to be an effective method to remediate the contaminated soils with the TPHs and heavy metals.

Removal of Heavy Metals by Cladophora sp. in Batch Culture: The Effect of Wet-mixed Solidified Soil (loess) on Bioremoval Capacities

  • Kim, Jin-Hee;Lee, Kyung-Lak;Kim, Sook-Chan;Kim, Han-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.4
    • /
    • pp.537-545
    • /
    • 2007
  • The heavy metal removal capacity of filamentous green alga Cladophora sp. cultured together with wet-mixed solidified soil (loess) was tested. A Cladophora sp. was cultured for 5d, with added Chu No. 10 medium, in stream water contaminated by high concentration of heavy metals from a closed mine effluent. Heavy metal ion concentrations of the medium and in algal tissue were measured every day during the experiment. Dissolved metals (Al, Cd, Cu, Fe, Mn, Zn) in medium were rapidly removed (over 90% elimination) within 1-2d when alga and loess were added. Dissolved heavy metals dropped by only 10% when algae were cultured without loess. The Cladophora sp. accumulated much more heavy metals when cultured with loess than when the alga was cultured alone. Cladophora sp. exhibited a maximum uptake capacity for Al ($17,000{\mu}g^{-1}$ algal dry weight). The metal bioremoval capacities of the algae were in the order Al, Fe, Cu, Mn, Zn and Cd. The heavy metal removal capacity of Cladophora sp. showed significant increases when wet-mixed solidified soil was added to culture media.

Removal of Heavy Metals by Sawdust Adsorption: Equilibrium and Kinetic Studies

  • Lim, Ji-Hyun;Kang, Hee-Man;Kim, Lee-Hyung;Ko, Seok-Oh
    • Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.79-84
    • /
    • 2008
  • Adsorption of heavy metals by sawdust was investigated to evaluate the effectiveness of using sawdust to remove heavy metals from aqueous solutions. Kinetic and isotherm studies were carried out by considering the effects of initial concentration and pH. The adsorption isotherms of heavy metals fitted the Langmuir or Freundlich model reasonably well. The adsorption capacity of metal was in the order $Pb^{2+}$ > $Cu^{2+}$ > $Zn^{2+}$. A high concentration of co-existing ions such as $Ca^{2+}$ and $Mg^{2+}$ depressed the adsorption of heavy metal. Adsorption data showed that metal adsorption on sawdust follows a pseudo-second-order reaction. Kinetic studies also indicated that both surface adsorption and intraparticle diffusion were involved in metal adsorption on sawdust. Column studies prove that sawdust could be effective biosorbent for the removal of heavy metals from aqueous phase.

The Removal of Heavy Metals and Anion in Mining Wastewater by Silica Matrix Coagulation (Silica계 응집제를 이용한 광산폐수의 중금속 및 음이온 제거)

  • 이해승;이영신;현근우
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.3
    • /
    • pp.80-86
    • /
    • 2001
  • This research was carried out to investigate the effect of microscopic silica matrix coagulation on heavy metals and anion removal in mining wastewater. pH and alkalinity played an important role to coagulate heavy metals such as Al, and Fe and an anion such as ${SO_4}^{2-}$ with silica matrix as well as NaOH. However, the efficiency to form coagulates was much greater in silica matrix-treated wastewater than NaOH-treated one. Fe in wastewater formed coagulation with both silica matrix and NaOH treatments resulting in lowering Fe content in wastewater at above pH 9. For Al removal in wastewater, silica matrix-treated wastewater at above pH 12.3 formed stable coagulate with Al, while NaOH-treated one did not. Alkalinities of 89 and 220 mg/L were required to stabilize silica matrix treated coagulate with Fe and Al, respectively. Reaction time of ten minute was required to provide enough reaction for coagulation between heavy metals and silica matrix. Heavy metals and anion leachates were much lower in coagulate with silica matrix than that with NaOH, which indicates that silica matrix could be used to remove heavy metals efficiently.

  • PDF

The Study on the Removal Process of Heavy Metals from Mine Drainage Using Coal Bottom Ash (석탄 바닥회를 이용한 광산배수의 중금속 제거 공정 연구)

  • Kim, Hye Rim;Lee, Jung Mi;Han, In Kyu
    • Resources Recycling
    • /
    • v.29 no.6
    • /
    • pp.41-47
    • /
    • 2020
  • This study was carried out to utilize the coal bottom ash generated in a circulating fluidized bed combustion boiler as a treatment agent for heavy metal ions, and experiments were conducted to remove heavy metal ions from the acid mine drainage. The batch experiments were conducted to investigate the influence of dosage of ash, initial concentration of solution on the removal capacity of heavy metal ions (Cu, Cd, Cr, Pb). The results of the experiment showed that the total removal capacity of heavy metals was 30.8 mg/L and 46.4 mg/g, respectively, under the condition that the concentration of coal ash was added as 15 g/L of heavy materials and 10 g/L of light materials. After that, a long-term column experiment was performed to determine the maximum removal capacity of heavy metal ions (Cu, Cd, Cr, Pb, As), and the removal capacity for each metal component was investigated. After approximately 60 days of operation, the maximum removal capacity of heavy metals was 23.6 mg/g at pH 9.25.