• 제목/요약/키워드: heavy metal resistance

검색결과 91건 처리시간 0.023초

Similarities of Tobacco Mosaic Virus-Induced Hypersensitive Cell Death and Copper-Induced Abiotic Cell Death in Tobacco

  • Oh, Sang-Keun;Cheong, Jong-Joo;Ingyu Hwang;Park, Doil
    • The Plant Pathology Journal
    • /
    • 제15권1호
    • /
    • pp.8-13
    • /
    • 1999
  • Hypersensitive cell death of plants during incompatible plant-pathogen interactions is one of the efficient defense mechanisms of plants against pathogen infections. For better understanding of the molecular mechanisms involved in the plant hypersensitive response (HR), TMV-induced biotic plant cell death and CuSO4-induced abiotic plant cell death were compared in terms of expression patterns of ten different defense-related genes as molecular markers. The genes include five pathogenesis-related protein genes, two plant secondary metabolite-associated genes, two oxidative stress-related genes and one wound-inducible gene isolated from tobacco. Northern blot analyses revealed that a same set of defense-related genes was induced during both biotic and abiotic cell death but with different time and magnitude. The expression of defense-related genes in tobacco plants was temporarily coincided with the time of cell death. However, when suspension cell cultures was used to monitor the expression of defense-related genes, different patterns of the gene expression were detected. This result implies that three are common and, in addition, also different branches of signaling pathways leading to the induced expression of defense-related genes in tobacco during the pathogen- and heavy metal-induced cell death.

  • PDF

슈퍼듀플렉스 스테인리스강의 TIG 용접에서 질소 침투 모델에 관한 연구 (A study of model for nitrogen permeation in TIG welding of super duplex stainless steel)

  • 이재형;정병호;조상명;전재호
    • Journal of Welding and Joining
    • /
    • 제33권3호
    • /
    • pp.68-74
    • /
    • 2015
  • Superduplex stainless steels are important materials to the oil and gas industry, especially for off-shore production. TIG welding of super duplex stainless steels to obtain the optimal phase balance between austenite and ferrite is mainly achieved by controlling the cooling rate and the weld chemistry. The latter depends on the filler wire chosen and the shielding gas used. If TIG welding of superduplex stainless steels is performed with argon shielding gas only, then nitrogen gets lost from the weld pool, which can result in a ferrite-rich weld metal, with an inferior corrosion resistance than parent metal. In the present study, nitrogen permeation model from the shield gas which gets into the weld metal in DCEN-TIG welding has suggested. This plasma stream model shows characteristics of permeation of nitrogen ions into the molten metal due to the strong physical effect of plasma stream which formed by the arc pressure rather than the permeation of nitrogen ions caused by electric effect.

용접재료 별 주강 피스톤 크라운 용접부위의 부식 특성에 대한 평가 (Evaluation of the Corrosion Property on the Welded Zone of Cast Steel Piston Crown with Types of Electrode)

  • 문경만;김윤해;이명훈;백태실;김진경
    • 한국해양공학회지
    • /
    • 제28권4호
    • /
    • pp.356-362
    • /
    • 2014
  • Wear and corrosion of the engine parts surrounded with combustion chamber is more serious compared to the other parts of the engine because temperature of the exhaust gas in a combustion chamber is getting higher and higher with increasing of using the heavy oil of low quality. Therefore, an optimum repair weldment as well as an available choice of the base metal for these parts are very important to prolong their lifetime in a economical point of view. It reported that there was an experimental result for repair weldment on the forged steel which would be generally used with piston crown material, however, it is considered that there is no study for the repair weldment on the cast steel of piston crown material. In this study, four types of electrodes such as 1.25Cr-0.5Mo, 0.5Mo Inconel 625 and 718 were welded with SMAW and GTAW methods on the cast steel which would be generally used with piston crown material. And the corrosion properties of weld metal, heat affected zone and base metal were investigated using electrochemical methods such as measurement of corrosion potential, anodic polarization curves, cyclic voltammogram and impedance etc. in 35% $H_2SO_4$ solution. In the cases of Inconel 625, 718, the weld metals and base metals exhibited the best and worst corrosion resistance respectively, however, 1.25Cr-0.5Mo and 0.5Mo indicated that corrosion resistance of the base metal was better than the weld metal. And the weld metal welded with electrodes of Inconel 625 revealed the best corrosion resistance among the electrodes, and Inconel 718 followed the Inconel 625. Hardness relatively also indicated higher value in the weld metal compared to heat affected zone and base metal. In particular, Inconel 718 indicated the highest value of hardness compared to other electrodes in the heat affected zone.

BrMT3 고발현에 의한 애기장대의 카드뮴 저항성 증진 (Enhancement of cadmium resistance by overexpression of BrMT3 in Arabidopsis)

  • 김선하;송원용;안영옥;이행순;곽상수;최관삼
    • Journal of Plant Biotechnology
    • /
    • 제36권1호
    • /
    • pp.68-74
    • /
    • 2009
  • B. rapa로부터 분리한 BrMT3 유전자를 도입시킨 효모와 애기장대가 카드뮴을 비롯한 중금속에 저항성을 보이는 것이 확인되었고 이 결과를 토대로 이 유전자가 중금속 흡착을 통한 환경 정화 및 스트레스에 내성을 갖는 형질전환 식물체를 개발하는데 유용하게 사용될 것으로 기대된다.

STATUS OF WELDING FOR POWER PLANT FACILITIES

  • Hur, Sung-do
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.342-348
    • /
    • 2002
  • The welding technology for production of power plant facility as for other industries has been progressing forward automation and mechanization for cost reduction and shortening of cycle time. The welding for boiler tube is automated or mechanized as the parts and subassemblies of tubes are conveyed automatically in the shop. The temperature of boiler stearn is being progressively increased for higher plant efficiency. The welding of nuclear component is characterized by heavy thickness and narrow gap Submerged Arc Welding. Narrow gap Gas Metal Arc Welding and Electron Beam Welding is applied to turbine diaphragm. To improve the resistance of solid particle erosion of turbine blade and nozzle partition, HVOF spray technology and boriding process has been applied.

  • PDF

Characteristics Evaluation on Welding Metal Zones Welded with Inconel 625 Filler Metal to Cast Steel for Piston Crown Material

  • Jeong, Jae-Hyun;Moon, Kyung-Man;Lee, Sung-Yul;Lee, Myeong-Hoon;Baek, Tae-Sil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권5호
    • /
    • pp.542-547
    • /
    • 2015
  • Since the oil price has been significantly jumped for several years, a heavy oil of low quality has been mainly used in the diesel engine of the merchant ship. Thus, a combustion chamber of the engine has been often exposed to severely corrosive environment more and more because temperature of the exhaust gas of the combustion chamber has been getting higher and higher with increasing of using the heavy oil of low quality. As a result, wear and corrosion of the engine parts such as exhaust valve, piston crown and cylinder head surrounded with combustion chamber are more serious compared to the other parts of the engine. Therefore, an optimum repair welding for these engine parts is very important to prolong their lifetime in a economical point of view. In this study, Inconel 625 filler metal were welded with GTAW method in the cast steel which would be generally used with piston crown material. And the corrosion properties of weld metal, heat affected and base metal zones were investigated using electrochemical methods such as measurement of corrosion potential, anodic polarization curves, cyclic voltammogram and impedance etc. in 35% $H_2SO_4$ solution. The weld metal and base metal zones exhibited the highest and lowest values of hardness respectively. Furthermore, the corrosion current density of the weld metal zone revealed the lowest value, having the highest value of hardness. The corrosive products with red color and local corrosion like as a pitting corrosion were considerably observed at the base metal zone, while these morphologies were not wholly observed in the weld metal zone. In particular, the polarization characteristics such as impedance, polarization curve and cyclic voltammogran associated with corrosion resistance property were well in good agreement with each other. Consequently, it is suggested that the mechanical and corrosion characteristics of the piston crown can be predominantly improved by repair welding method using the Inconel 625 electrode.

선택도핑을 적용한 Ni/Cu 전면 전극 실리콘 태양전지에 관한 연구 (Study of Ni/Cu Front Metal Contact Applying Selective Emitter Silicon Solar Cells)

  • 이재두;권혁용;이수홍
    • 대한금속재료학회지
    • /
    • 제49권11호
    • /
    • pp.905-909
    • /
    • 2011
  • The formation of front metal contact silicon solar cells is required for low cost, low contact resistance to silicon surfaces. One of the available front metal contacts is Ni/Cu plating, which can be mass produced via asimple and inexpensive process. A selective emitter, meanwhile, involves two different doping levels, with higher doping (${\leq}30{\Omega}/sq$) underneath the grid to achieve good ohmic contact and low doping between the grid in order to minimize the heavy doping effect in the emitter. This study describes the formation of a selective emitter and a nickel silicide seed layer for the front metallization of silicon cells. The contacts were thickened by a plated Ni/Cu two-step metallization process on front contacts. The experimental results showed that the Ni layer via SEM (Scanning Electron Microscopy) and EDX (Energy dispersive X-ray spectroscopy) analyses. Finally, a plated Ni/Cu contact solar cell displayed efficiency of 18.10% on a $2{\times}2cm^2$, Cz wafer.

잔류 염소가 포함된 해수에서의 Cu-Ni 합금의 부식 거동 연구 (A Study on the Corrosion of Cu-Ni Alloy in Chlorinated Seawater for Marine Applications)

  • 정근수;윤병영;임채선
    • Corrosion Science and Technology
    • /
    • 제17권4호
    • /
    • pp.176-182
    • /
    • 2018
  • Corrosion of the Cu alloy with 10wt% Ni in stagnant seawater with residual free chlorine was investigated. Despite that fact that Cu alloys are widely used for seawater applications due to their stubborn resistance to chloride attack, not much is known as to how the residual free chlorine in seawater affects corrosion of Cu and its alloys. In this work, immersion tests were conducted in the presence of different levels of chlorine for 90-10 Cu-Ni samples, one of the most frequently used Cu alloys for seawater application, mostly in shipbuilding. The results revealed no evidence for accelerated corrosion of the Cu-Ni alloy even in the presence of 5 ppm residual chlorine in seawater, signifying that the Cu-Ni alloy can be more tolerant to residual chlorine that has been commonly cited by the shipbuilding industry. However, comparison of polarization behavior of the alloy samples in the presence of different electrolytes with different concentrations of residual chlorine suggests that higher concentration of chlorine could increase the corrosion rate of the Cu-Ni alloy. Furthermore, it is suggested that microorganisms in the seawater could increase the corrosion rate of the Cu-Ni alloy by encouraging exfoliation of the corrosion product off the metal surface.

HSC발전소 터빈용 초내열합금 Alloy 617 및 263 용접부의 미세조직에 미치는 후열처리의 영향 (Effects of Post Weld Heat Treatment on Microstructures of Alloy 617 and 263 Welds for Turbines of HSC Power Plants)

  • 김정길;심덕남;박해지
    • Journal of Welding and Joining
    • /
    • 제34권3호
    • /
    • pp.52-60
    • /
    • 2016
  • Recently nickel based superalloys are extensively being regarded as the materials for the steam turbine parts for hyper super critical (HSC) power plants working at the temperature over $700^{\circ}C$, since the materials have excellent strength and corrosion resistance in high temperature. In this paper, alloy 617 of solution strengthened material and alloy 263 of ${\gamma}^{\prime}$-precipitation strengthened material were prepared as the testing materials for HSC plants each other. Post weld heat treatment (PWHT) was conducted with the gas tungsten arc (GTA) welded specimens. The microstructure of the base metals and weld metals were investigated with Electron Probe Micro-Analysis (EPMA) and Scanning Transmission Electron Microscope (STEM). The experimental results revealed that Ti-Mo carbides were formed in both of the base metals and segregation of Co and Mo in both of the weld metals before PWHT and PWHT leaded to precipitation of various carbides such as Mo carbides in the specimens. Furthermore, fine ${\gamma}^{\prime}$ particles, that were not precipitated in the specimens before PWHT, were observed in base metal as well as in the weld metal of alloy 263 after PWHT.

S-Nitrosoglutathione (GSNO) Alleviates Lead Toxicity in Soybean by Modulating ROS, Antioxidants and Metal Related Transcripts

  • Methela Nusrat Jahan;Islam Mohammad Shafiqul;Da-Sol Lee;Youn-Ji Woo;Bong-Gyu Mun;Byung-Wook Yun
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2023년도 춘계학술대회
    • /
    • pp.105-105
    • /
    • 2023
  • Heavy metals, including lead (Pb) toxicity, are increasing in soil and are considered toxic in small amounts. Pb contamination is mainly caused by industrialization - smelting, mining. Agricultural practices - sewage sludge, pests and urban practices - lead paint. It can seriously damage and threaten crop growth. Pb can adversely affect plant growth and development by affecting the photosystem, cell membrane integrity, and excessive production of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2)andsuperoxide(O2.-). NO is produced via enzymatic and non-enzymatic antioxidants to scavenge ROS and lipid peroxidation substrates in terms of protecting cells from oxidative damage. Thus, NO improves ion homeostasis and confers resistance to metal stress. Our results here suggest that exogenous NO may aid in better growth under lead stress. These enhancements may be aided by NO's ability in sensing, signaling and stress tolerance in plants under heavy metal stress in combination with lead stress. Our results show that GSNO has a positive effect on soybean seedling growth in response to axillary pressure and that NO supplementation helps to reduce chlorophyll maturation and relative water content in leaves and roots following strong burst under lead stress. GSNO supplementation (200 µM and 100 µM) reduced compaction and approximated oxidative damage of MDA, proline and H2O2. Under plant tension, a distorted appearance was found in the relief of oxidative damage by ROS scavenging by GSNO application. In summary, modulation of these NO, PCS and prolongation of metal past reversing GSNO application confirms the detoxification of ROS induced by toxic metal rates in soybean. In summary, these NO, PCS and metal traditionally sustained rates of reverse GSNO application confirm the detoxification of ROS induced by toxic metal rates in soybean.

  • PDF