• Title/Summary/Keyword: heavy metal rejection

Search Result 8, Processing Time 0.017 seconds

Rejection Characteristics of Various Heavy Metals by Low-pressure Nanofiltration (저압나노여과에 의한 각종 중금속의 제거 특성)

  • Oh, Jeong-Ik;Kim, Han-Seung;Kim, Chung-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.4
    • /
    • pp.493-499
    • /
    • 2004
  • Rejection characteristics of heavy metals by nanofiltration membranes were investigated. Nanofiltration membranes rejected heavy metals much better than chloride, sulfate and TOC, of which concentration in synthetic wastewater was higher than that of heavy metals. To consider rejection characteristics of various metals by nanofiltration membranes, separation coefficient, which is the ratio of the metal permeation rate to the chloride ion or TOC permeation rate, was introduced. In spite of different materials and different nominal salt rejection of nanofiltration membrane used, the separation coefficients of metals were nearly the same. In particular, the separation coefficient of arsenic against chloride ion and TOC was larger than any other separation coefficient of heavy metals. These phenomena were observed in the relationship between the molar conductivity and the separation coefficient for heavy metals.

Tuning the surface charge of mixed matrix membranes using novel chemistry

  • Priyanka Mistry;C.N. Murthy
    • Membrane and Water Treatment
    • /
    • v.15 no.3
    • /
    • pp.139-152
    • /
    • 2024
  • Mixed matrix membranes have gained significant recognition in the wastewater treatment industry for their effectiveness in removing dyes, proteins, and heavy metals from water sources. Researchers have developed an innovative technique to enhance properties of these membranes by incorporating amine-functionalized carbon nanotubes into the polymer matrix. This approach introduces amine functional groups onto the membrane surface, which are then modified with trimesoyl chloride and cyanuric chloride. The modified membranes are characterized by XPS to confirm successful bonding of amines with the trimesoyl chloride and cyanuric chloride. The surface charge of the modified membrane also plays a role in the modification process; the membrane modified with trimesoyl chloride has a negative surface charge, while the one modified with cyanuric chloride has a more positive charge. At the same acidic pH, the positive or negative charge of the mixed matrix membranes assists in enhancing the rejection of heavy metals. This results in improved antifouling properties for both modified membranes. The heavy metal rejection for all modified membranes is higher than for unmodified membranes, due to both adsorption and complexation abilities of the functional groups on the membrane surface with heavy metal ions. As the membrane surface functionalities increase through modification, the separation due to complexation also increases. The bulk morphology of the membrane remains unchanged, while roughness slightly increases due to the surface treatment.

Effect of Ionic Molar Conductivity on Separation Characteristics of Heavy Metals by Nanofiltration Membranes in Waste Water (이온 몰 전도도가 나노여과막에 의한 폐수 중의 중금속 분리특성에 미치는 영향)

  • Oh, Jeong-Ik
    • Land and Housing Review
    • /
    • v.4 no.1
    • /
    • pp.119-124
    • /
    • 2013
  • Generally, the characteristic of nanofiltration membranes were catagorized into charged membrane, sieve effect, interaction between membarnes and target solutes. This study aims to investigate the effect item of heavy metal separation with view of charge nanofiltration membranes. The experiments of nanofiltration were conducted by nanofiltration set-up with operational pressure of 0.24 MPa at $25^{\circ}C$ by using synthetic wastewater containing 0.1mg/L of Cr, Fe, Cu, Zn, As, Sn, Pb. Nanofiltration membranes rejected heavy metals much better than chloride, sulfate and TOC, of which concentration in synthetic wastewater was higher than that of heavy metals. To consider rejection characteristics of various metals by nanofiltration membranes, separation coefficient, which is the molar conductivity ratio of the metal permeation rate to the chloride ion or TOC permeation rate, was introduced. In spite of different materials and different nominal salt rejection of nanofiltration membrane used, the separation coefficients of metals were nearly the same. These phenomena were observed in the relationship between the molar conductivity and the separation coefficient for heavy metals.

Pilot scale membrane separation of plating wastewater by nanofiltration and reverse osmosis

  • Jung, Jaehyun;Shin, Bora;Lee, Jae Woo;Park, Ki Young;Won, Seyeon;Cho, Jinwoo
    • Membrane and Water Treatment
    • /
    • v.10 no.3
    • /
    • pp.239-244
    • /
    • 2019
  • Plating wastewater containing various heavy metals can be produced by several industries. Specifically, we focused on the removal of copper (Cu2+) and nickel (Ni+) ions from the plating wastewater because all these ions are strictly regulated when discharged into watershed in Korea. The application of both nanofiltration (NF) and reverse osmosis (RO) technologies for the treatment of wastewater containing copper and nickel ions to reduce fresh water consumption and environmental degradation was investigated. In this work, the removal of copper (Cu2+) and nickel (Ni+) ions from synthetic water was studied on pilot scale remove by before using two commercial nanofiltration (NF) and reverse osmosis(RO) spiral-wound membrane modules (NE2521-90 and RE2521-FEN by Toray Chemical). The influence of main operating parameters such as feed concentration on the heavy metals rejection and permeate flux of both membranes, was investigated. Synthetic plating wastewater samples containing copper ($Cu^{2+}$) and nickel ($Ni^{2+}$) ions at various concentrations(1, 20, 100, 400 mg/L) were prepared and subjected to treatment by NF and RO in the pilot plant. The results showed that NF, RO process, with 98% and 99% removal for copper and nickel, respectively, could achieve high removal efficiency of the heavy metals.

Application of Reverse Osmosis Plate and Frame Type for Separation and Concentration Heavy Metal[Cu(II), Zn(II)] (중금속[Cu(II), Zn(II)]의 분리 및 농축을 위한 역삼투 판틀형 모듈의 적용)

  • Lee, Kwang-Hyun;Kang, Byung-Chul;Lee, Jong-Baek;Kim, Jong-Pal
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.4
    • /
    • pp.307-312
    • /
    • 2004
  • This study was focused on experiment for the separation and concentration process of Cu(II), Zn(II) solution with the variation of applied pressure and concentration using reverse osmosis plate and frame modules. Rejection coefficient and degree of concentration for Cu(II) component using single and multi-stage reverse osmosis process were showed 96.3~97.8%, 0.044~0.191(in single-stage), 96.3~98.4%, 0.400~2.264(in multi-stage) within the range of experimental condition, respectively. Those of Zn(II) were 93.3~97.1%, 0.019~0.395(in single-stage), 96.3~98.2%, 0.365~1.454(in multi-stage), respectively. Degree of concentration of multi-stage were higher than those of single-stage. Heavy metal[Cu(II), Zn(II)] separation was very efficient in using reverse osmosis plate and frame type modules. Separation efficiency for a mixed solution Cu(II) and Zn(II) was higher than those of each one of Cu(II) and Zn(II).

Removal of Co++ Ion in the Hollow Fiber Ultrafiltration System using Anion Surfactant Micellar Enhancement (음이온 계면활성제 미셀형성을 이용한 중공사 한외여과막 시스템에서의 코발트(Co)이온 제거)

  • Yang, Hyun-Soo;Han, Kwang-Hee;Choi, Kwang-Soon
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.109-117
    • /
    • 1996
  • Removal of metal ions on the ultrafiltration membrane with micellar-enhanced with anion surfactants is a recently developed technique which can remove heavy metals and small molecular weight ions from wastewater with simple separation process and without a phase change. Above a certain concentration, so called the critical micelle con binding cationic cobalt ions and anionic surfactants, were removed by ultrafiltration membrane. The transmembrane pressure difference had a relatively small effect on the rejection coefficient of metal ions on the ultrafiltration membrane whereas the level of anionic surfactant-to-metal ratio (S/M) had a substantial effect.

  • PDF

Recycling of Acidic Etching Waste Solution Containing Heavy Metals by Nanofiltration (I): Evaluation of Acid Stability of Commercial Nanofiltration Membranes (나노여과에 의한 중금속 함유 산성 폐에칭액의 재생(I): 상용 나노여과 막의 산 안정성 평가)

  • Youm, Kyung-Ho;Shin, Hwa-Sup;Jin, Cheon-Deok
    • Membrane Journal
    • /
    • v.19 no.4
    • /
    • pp.317-323
    • /
    • 2009
  • In this study the nanofiltration (NF) membrane treatment of a nitric acid waste solutions containing $Pb^{+2}$ heavy metal ion discharging from the etching processes of an electronics and semiconductors industry has been studied for the purpose of recycling of nitric acid etching solutions. Three kinds of NF membranes (General Electric Co. Duraslick NF-4040 membrane, Dow Co. Filmtec LP-4040 membrane and Koch Co. SelRO MPS-34 4040 membrane) were tested for their separation efficiency (total rejection) of $Pb^{+2}$ ion and membrane stability in nitric acid solution. NF experiments were carried out with a dead-end membrane filtration laboratory system. The membrane permeate flux was increased with the increasing storage time in nitric acid solution and lowering pH of acid solution because of the enhancing of NF membrane damage by nitric acid. The membrane stability in nitric acid solution was more superior in the order of Filmtec LP-4040 < Duraslick NF-4040 < SelRO MPS-34 4040 membrane. The total rejection of Pb+2 ion was decreased with the increasing storage time in nitric acid solution and lowering the pH of acid solution. The total rejection of $Pb^{+2}$ ion after 4 months NF treatment was decreased from 95% initial value to 20% in the case of Duraslick NF-4040 membrane, from 85% initial value to 65% in the case of SelRO MPS-34 4040 membrane and from 90% initial value to 10% in the case of Filmtec LP-4040 membrane. These results showed that SelRO MPS-34 4040 NF membrane was more suitable for the treatment of an acidic etching waste solutions containing heavy metal ions.

Covalent Organic Framework Based Composite Separation Membrane: A Review (공유 유기 골격체 기반 복합 분리막 : 고찰)

  • Jeong Hwan Shim;Rajkumar Patel
    • Membrane Journal
    • /
    • v.33 no.4
    • /
    • pp.149-157
    • /
    • 2023
  • Covalent organic frameworks (COFs) have shown promise in various applications, including molecular separation, dye separation, gas separation, filtration, and desalination. Integrating COFs into membranes enhances permeability, selectivity, and stability, improving separation processes. Combining COFs with single-walled carbon nanotubes (SWCNT) creates nanocomposite membranes with high permeability and stability, ideal for dye separation. Incorporating COFs into polyamide (PA) membranes improves permeability and selectivity through a synthetic interfacial strategy. Three-dimensional COF fillers in mixed-matrix membranes (MMMs) enhance CO2/CH4 separation, making them suitable for biogas upgrading. All-nanoporous composite (ANC) membranes, which combine COFs and metal-organic framework (MOF) membranes, overcome permeance-selectivity trade-offs, significantly improving gas permeance. Computational simulations using hypothetical COFs (hypoCOFs) demonstrate superior CO2 selectivity and working capacity relevant for CO2 separation and H2 purification. COFs integrated into thin-film composite (TFC) and polysulfonamide (PSA) membranes enhance rejection performance for organic contaminants, salt contaminants, and heavy metal ions, improving separation capabilities. TpPa-SO3H/PAN covalent organic framework membranes (COFMs) exhibited superior desalination performance compared to traditional polyamide membranes by utilizing charged groups to enable efficient desalination through electrostatic repulsion, suggesting their potential for ionic and molecular separations. These findings highlight COFs' potential in membrane technology for enhanced separation processes by improving permeability, selectivity, and stability. In this review, COF applied for the separation process is discussed.