• Title/Summary/Keyword: heavy metal accumulation

Search Result 236, Processing Time 0.025 seconds

Cadmium Accumulation and Tolerance of Iris pseudacorus and Acorus calamus as Aquatic Plants Native to Korea (자생 수생식물 노랑꽃창포와 창포의 카드뮴 축적 및 내성)

  • Lee, Sung-Chun;Kim, Wan-Soon
    • Horticultural Science & Technology
    • /
    • v.29 no.5
    • /
    • pp.413-419
    • /
    • 2011
  • This study was conducted to find out the cadmium (Cd) accumulation and tolerance of Iris pseudacorus and Acorus calamus as aquatic plants native to Korea for Cd removal in water. In the range of Cd concentration from $10{\mu}M$ to $130{\mu}M$, the Cd lethal dose 50 ($LD_{50}$) was $78.5{\mu}M$ in I. pseudacorus and $47.6{\mu}M$ in A. calamus. In I. pseudacorus, superoxide dismutase and peroxidase as antioxidants were relatively effective against oxidative stress caused by Cd, while catalase, superoxide dismutase, and polyphenolics were effective in A. calamus. The polyphenolics known as typical antioxidants were not detected in I. pseudacorus. In both species, the Cd accumulation in plants increased with the higher Cd concentration and the longer processing period. Also, the absorbed Cd was accumulated mainly in the roots. The amount of Cd accumulated in the shoot part was maximally $548.1mg{\cdot}kg^{-1}$ (82.1% to Cd accumulated in the root part) in I. pseudacorus and $121.4mg{\cdot}kg^{-1}$ (13.7%) in A. calamus, which implied that both species all were enough evaluated as Cd hyper-accumulators based on 0.01% or more Cd accumulation in the shoot. Especially I. pseudacorus showed outstanding ability to move well Cd into the shoots from the roots and high tolerance to Cd stress.

Study on Accumulation of Ni in Seedlings and Growth rate of Salix reichardtii by Hydroponic Culture in Ni Solution (수경재배에 의한 Salix reichardtii 묘의 생장 및 부위별 Ni축적에 관한 연구)

  • Lee, Chang-Heon;Lim, Yu-Mi
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.3
    • /
    • pp.292-297
    • /
    • 2010
  • This study was carried out to provide preliminary data to purify contaminated sites by nickel (Ni). After rooted cuttings of Salix reichardtii had been grown in Ni solution (hydroponic culture), pH changes in the solution and the accumulated Ni amount in plant parts were measured and analyzed. When the Ni concentration was low enough for S. reichardtii cuttings to grow well, the pH value of the solution decreased considerably. As the Ni concentration got higher, the plant growth got poorer and the pH value decreased slowly. Roots accumulated the highest Ni amount. Leaves and stems followed after. When stems were older, the accumulated Ni amount was lower. more Ni was accumulated in the plant parts which had more flexible tissue and live cells. As the Ni concentration in solution got higher up to 50.0 ${\mu}mol$/L, so did the Ni accumulation in the plant parts. However, the plant individuals nearly died and the Ni accumulation tended to drop when the Ni concentration in solution was 100.0 ${\mu}mol$/L. The rooted cuttings of S. reichardtii grew poorer as the Ni concentration in solution got higher. The plants in solution with 100.0 ${\mu}mol$/L of Ni were practically dead in four weeks.

The effect of sewage sludge compost amended soils on the growth of Orchardgrass seedlings (하수오니 첨가토양이 Orchardgrass 유식물체의 생육에 미치는 영향)

  • Lee, Ju Sam
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.2 no.2
    • /
    • pp.77-88
    • /
    • 1994
  • This experiment was carried out to investigate the effect of sewage sludge compost amended soils on the growth and accumulation patterns of heavy metals in plant parts of Orchardgrass seedlings, changes in physical properties and chemical composition, and heavy metal residue in soils. Mixture ratios of sewage sludge compost and soil(loam) were 100:0, 80:20, 60:40, 40:60, 20:80 and 0:100(control), respectively. The results obtained were as follows; 1. The physical properties and chemical compostion of soils were improved by increase in mixture ratios of sewage sludge compost. 2. The biological yield of Orchardgrass seedlings was increased with mixture ratios of sewage sludge compost. 3. The dry weight of shoot(SH) was increased with both of yield components(NT and WT) and biological yield of Orchardgrass seedlings. 4. The total nitrogen concentrations(TN) of plants was increased with quadratically up to the biological yield of 100% mixture ratio of sewage sludge compost. 5. Lead(Pb) concentration of soil in over the 60% mixture ratios of sewage sludge compost were in excess of limiting level(50ppm) of organic fertilizers.

  • PDF

Short-term Effect of Phosphogypsum on Soil Chemical Properties

  • Chung, Jong-Bae;Kang, Sun-Chul;Park, Shin
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.5
    • /
    • pp.317-324
    • /
    • 2001
  • Short-term effect of phosphogypsum on soil properties including acidification, salinity and metal availability were investigated under laboratory and field conditions. Phosphogypsum and mixtures of phosphogypsum and compost were added to soil and incubated in a laboratory condition with 15% moisture content. Phosphogypsum treatments were 2.5 and 5.0 g/kg soil and in the treatments of phosphogypsum and compost mixture 10 g of compost was added additionally. After the 30 days of incubation, an additional phosphogypsum and/or compost were added to the remaining soils at the same rates of the first treatments. pH, electrical conductivity, and available hazardous elements were measured periodically during the incubation. Field experiment was conducted in a plastic film house of mellon with four treatments of phosphogypsum and compost mixtures - 25+125, 50+125, 50+250 and 100+250 kg/165 $m^2$. pH, electrical conductivity, and hazardous elements in soil and total hazardous elements in leaf were measured. In the laboratory experiment, after 30 days of the first phosphogypsum application, soil pHs were lowered by 0.7-0.8 units. After the second treatment of phosphogypsum 0.2 units of additional acidification occurred. However, acidification was not observed in the soils treated with mixtures of phosphogypsum and compost. In the laboratory experiment, phosphogypsum treatments increased electrical conductivity very significantly. In field experiment, pH and electrical conductivity of soils treated with phosphogypsum were nearly the same as those of soil not treated with phosphogypsum. Since soil condition in the field study was an open system, the free acids and salts derived from phosphogypsum could be diffused down with water leaching through the soil profile and then any significant acidification or salt accumulation in the topsoil could not be observed. In both laboratory and field experiments, levels of available hazardous elements in soils treated with phosphogypsum were quite low and not different from the levels found in the control soil. Results obtained from this study suggest that application of phosphogypsum at appropriate rates on agricultural land appears of no concern in terms of acidity, salinity and hazardous element content of soil.

  • PDF

Distribution Characteristics of Soil Contaminants in Hanam Industrial Complex, Gwangju by land use (토지이용실태에 따른 하남산업단지 토양오염물질 분포 특성에 관한 연구)

  • Kong, Hwa-jin;Wi, Whan;Kim, Seung-ho;Park, Ok-hyun;Jang, Gil-sik;Jung, Hee-yun;Bae, Seok-jin;Jeong, Suk-kyung;Cho, Young-gwan
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.2
    • /
    • pp.30-39
    • /
    • 2018
  • Soil contamination survey was conducted during March - July, 2017 to obtain soil contamination profile of 16 organic and inorganic contaminants in Hanam industrial complex located in Gwangju, Korea. The concentrations of all surveyed contaminants except Cd showed were within 0.3~1.5 times of their natural background levels. Cd showed concentrations as high as 6.9 times of the background level, signifying the influence of the metal processing facilities in the complex. The concentrations of Zn, Pb and Hg in areas nearby industrial facilities were 1.3~5.5 times higher than those within the facility and green area. The concentration of Cu in the green area was 1.4~2.9 times higher than in other areas. The Soil Pollution Index (SPI) analysis revealed 54% of the total area belong to first-grade soil, 43% to second-grade, and 3% to third-grade. The Enrichment Factor (EF) of Zn, Pb, and Cd were 9.2, 15.6, and 88.5, respectively, indicating high accumulation and contamination of the soil with Cd.

Effect of Immature Compost on Available Nutrient Capability and Heavy Metal Accumulation in Soil for Lettuce (Lactuca sativa L.) Cultivation (퇴비 내 영양소 및 중금속이 상추 재배에 미치는 영향)

  • Phonsuwan, Malinee;Lee, Min Ho;Moon, Byeong Eun;Kim, Young Bok;Kaewjampa, Naruemol;Yoon, Yong Cheol;Kim, Hyeon Tae
    • Journal of Bio-Environment Control
    • /
    • v.25 no.4
    • /
    • pp.343-350
    • /
    • 2016
  • The aim of this study was to evaluate effects of immature compost on the amount of nutrient content, heavy metal concentration, and application rate that were used for lettuce cultivation. The characteristics of the two composts (Compost A (CA) was immature compost and Compost B (CB) was mature compost) were evaluated upon mixing with commercial soil at 0%, 25%, 50%, and 75% (w/w). The poor chemical characteristics were appeared by use of immature compost as soil amendment; the 50% and 75% rates were weakly acidic at pH 5.39 and 5.50, respectively. The total carbon content at using of 75% of the immature compost and mature compost increased the most to 14.5 and 6.5% and it significantly increased concentrations of the total nitrogen and phosphorus compared to control. As for 75% mature compost rate increased significantly the concentrations of Cu ($128mg\;kg^{-1}$), Zn ($260mg\;kg^{-1}$), Pb ($0.32mg\;kg^{-1}$) and, Cd ($0.48mg\;kg^{-1}$) compared to control, and the highest As concentration increased significantly at 75% and 50% (6.69 and $6.28mg\;kg^{-1}$) including in 25% immature compost as $6.48mg\;kg^{-1}$. However, all of the high compost rates significantly decreased the shoot biomass of lettuce. The immature compost was potentially amended at an application rate of 25% due to a slight salinity and low risk to heavy metal uptake on lettuce growth. This use may be available if the rate is lower than that used in this trial.

Removal of Mixed Cd, Cr, Cu, Ni and Zn by Hibiscus canabinas (Hibiscus canabinas를 이용한 Cd, Cr, Cu, Ni 및 Zn의 제거)

  • 최문술;임철호
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.1
    • /
    • pp.120-126
    • /
    • 2004
  • Kenaf plants were hydroponically grown in reactor containing toxic metals as Cd, Cu, Cr, Ni and Zn to examine the ability to take up heavy metal. The plants were fertilized using a nutrient solution, which was appropriately adjusted to optimum pH, DO and conductivity. For n hydraulic retention time of 8 days, Cr, Cd, Cu, Ni and Zn were removed up to 90.5, 80.5, 66.1%, 71.1% and 79.4%, and reduced from 2.34 to 0.54 mg $L^{-1}$, 3.37 to 1.07 mg $L^{-1}$, 4.92 to 3.19 mg $L^{-1}$, 6.31 to 4.41 mg $L^{-1}$ and 6.27 to 2.09 mg $L^{-1}$. Especially, accumulation rate of Cr, Cd, Cu, Ni and Zn in the plant were measured up to 347.32, 275.39, 157.52, 50.48 and 211.01 mg DW kg $L^{-1}d^{-1}$, respectively. We considered that Kenaf plants removed Cr, Cd and Zn more effectively than other toxic metals applied.

Correlation of Arsenic and Heavy Metals in Paddy Soils and Rice Crops around the Munmyung Au-Ag Mines (문명 금은광산 주변 논토양에서 As 및 중금속의 토양과 벼작물의 상관성 평가)

  • Kwon, Ji Cheol;Park, Hyun-Jung;Jung, Myung Chae
    • Economic and Environmental Geology
    • /
    • v.48 no.4
    • /
    • pp.337-349
    • /
    • 2015
  • This study has focused on investigation of correlation for As and heavy metals in paddy soil and rice crops sampled in the vicinity of the abandoned Munmyung Au-Ag mine. Soil samples extracted by various methods including aqua regia, 1 M $MgCl_2$, 0.01 M $CaCl_2$ and 0.05 M EDTA were analyzed for As and heavy metals (Cd, Cu, Pb and Zn). Rice grain samples grown on the soils were also analyzed for the same elements to evaluate the relationships between soils and rice crops. According to soil extraction methods, As and heavy metal contents in the soils were decreased in the order of aqua regia > 0.01 M $CaCl_2$ > 1 M $MgCl_2$ > 0.05 M EDTA. In addition to correlation analysis, statistically significant correlation with the four extraction methods (p<0.01) were found in the soil and rice samples. As calculation of biological accumulation coefficients (BACs) of the rice crops for As and heavy metals, the BACs for Cd, Zn and Cu were relatively higher than those for As and Pb. This study also carried out a stepwise multiple linear regression analysis to identify the dominant factors influencing metal extraction rates of the paddy soils. Furthermore, daily intakes of As and heavy metals from regularly consumed the rice grain (287 g/day) grown on the contaminated soils by the mining activities were estimated, and found that Cd and As intakes from the rice reached up to 73.7% and 51.8% for maximum allowance levels of trace elements suggested by WHO, respectively. Therefore, long-term consumption of the rice poses potential health problems to residents around the mine, although no adverse health effects have yet been observed.

Effect of Mixed Planting Ratios of Pteris multifida Poir. and Artemisia princeps Pamp. on Phytoremediation of Heavy Metals Contaminated Soil (중금속 오염토양 정화에 영향을 미치는 봉의꼬리(Pteris multifida Poir.)와 쑥(Artemisia princeps Pamp.)의 혼합식재 비율)

  • Kwon, Hyuk Joon;Jeong, Seon A;Shin, So Lim;Lee, Cheol Hee
    • Korean Journal of Plant Resources
    • /
    • v.30 no.2
    • /
    • pp.160-166
    • /
    • 2017
  • This study was performed to develop the efficient phytoremediation model in the paddy soil contaminated with heavy metals by cultivating Pteris multifida and Artemisia princeps with different mixing ratios (1:0, 8:1, 6:1, 4:1). As a result of investigating the heavy metal accumulation of each plant per dried material (1 kg), content of arsenic and cadmium was the highest in aerial part of P. multifida (169.82, $1.70mg{\cdot}kg^{-1}DW$, each) among the treated group. Lead content was the highest ($12.58mg{\cdot}kg^{-1}DW$) in the aerial part of P. multifida cultivated with 8:1 mixed planting. But the content of copper and zinc was the highest (33.94, $61.78mg{\cdot}kg^{-1}DW$, each) in the aerial part of A. princeps with 8:1 treatment. Regardless of heavy metals, plant uptake from the $1m^2$ soil was the highest in 4:1 mixed planting group, which showed the best yield of A. princeps.

Morphological and Physiological Effects of Lead (Pb) Exposure on Tissues of Carassius auratus (납 노출에 따른 붕어(Carassius auratus) 조직의 미세구조 및 생리적 변화)

  • Kim, Jeong-Sook;Shin, Myung-Ja;Lee, Jong-Eun;Seo, Eul-Won
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.3
    • /
    • pp.409-417
    • /
    • 2010
  • Present study aimed to investigate morphological and physiological change in the tissues of Carassius auratus after exposure against Pb (lead) with various rearing condition. We measured the level of accumulated heavy metal and analyzed ultrastructure with transmission electron microscopy. The heavy metal, Pb, was accumulated in the gill, bone and integument increased drastically for exposure periods, the 40 days. The accumulation of Pb in the gill showed relatively higher than that in other tissues. And accumulated Pb amounts also were increased with exposure time dependent manner in the gill, bone and integument tissues. Also, specific activities of antioxidation enzymes in all tissue after exposure to Pb were increased in the course of exposure. And the activities of SOD from tissues exposed to Pb were increased 2 folds than those from the unexposed but GPX activities were maintained constant. The increased numbers of mucous cells in gill tissues exposed to Pb were determined and morphological changes, such as clubbing and fusion, were shown secondary lamella. Also, exposure of Pb for 40 days on gills tissues cause membrane damage in mitochondria and nucleus. In kidney tissues, the atrophied glomerulus was observed, and the empty space in Bowman's capsule was expanded. Based on the all results, it is suggested that the exposure to the high level of Pb for long period affect on the morphology of tissues, and change the enzymatic balance in C. auratus.