• Title/Summary/Keyword: heavy metal absorption

Search Result 203, Processing Time 0.028 seconds

The impact of municipal waste disposal of heavy metals on environmental pollution: A case study for Tonekabon, Iran

  • Azizpour, Aziz;Azarafza, Mohammad;Akgun, Haluk
    • Advances in environmental research
    • /
    • v.9 no.3
    • /
    • pp.175-189
    • /
    • 2020
  • Municipal solid waste disposal is considered as one of the most important risks for environmental contamination which necessitates the development of strategies to reduce destructive consequences on the ecosystem as related especially to heavy metal accumulation. This study investigates heavy metal (i.e., As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn) accumulation in the Tonekabon region, NW of Iran that is related to city waste disposal and evaluates the environmental impact in the Caspian Sea coastal region. For this purpose, after performing field studies and collecting 50 soil specimens from 5 sites of the study area, geochemical tests (i.e., inductively coupled plasma mass spectrometry, atomic absorption spectroscopy and x-ray fluorescence) were conducted on the soil specimens collected from the 5 sites (named as Sites A1, A2, A3, A4 and A5) and the results were used to estimate the pollution indices (i.e., geo-accumulation index, normalized enrichment factor, contamination factor, and pollution load index). The obtained indices were utilized to assess the eco-toxicological risk level in the landfill site which indicated that the city has been severely contaminated by Cu, Mn, Ni, Pb and Zn. These levels have been developed along the stream towards the nearshore areas indicating uptake of soil degradation. The heavy metal contamination was classified to range from unpolluted to highly polluted, which indicated serious heavy metal pollution in the study area as related to municipal solid waste disposal in Tonekabon.

A Study on Heavy Metal Contents of the Fresh Water Fish, and the Shellfish in Koran (국내 유통 민물어류와 연안산 패류의 중금속 함량에 관한 조사)

  • 김연천;한선희
    • Journal of Food Hygiene and Safety
    • /
    • v.14 no.3
    • /
    • pp.305-318
    • /
    • 1999
  • This study were conducted to estimate the values of the heavy metal in the fresh water fish and shellfish collected from fish market. The levels of the heavy metal were determined in a total of 319 samples of 11 species of the fresh water fish and 14 species of the shellfish by mercury analyzer and atomic absorption spectrophotometer. The results of this study were summerized as follows; The average contents of the heavy metal in the fresh water fish were Pb 0.075, Hg 0.05:3, Cd 0.002, Cr 0.135, Fe 8.695, Mn 1.078, Zn 9A91, Cu 0.548 mg/ kg. The average contents of the heavy metal in the shellfish were Pb 0.059. Hg 0.007, Cd 0.146, Cr 0.147, Fe 40.808, Mn 7.738, Zn 13.943, Cu 2.7:31 mg/kg. Being compared the average contents of the heavy metal of the fresh water fish with those of shellfish, the average contents of Cd, Fe, Mn, Cu in the shellfish were significantly higher than in the fresh water fish(P<0.001). Depending on the sampling areas, the average contents of the heavy metal were different by districts. The contents of the heavy metal were changed with the seasons(P<0.05).

  • PDF

The Effects of the Short-term Cultivation and Incorporation of Legume Green Manures on the Chemical Properties of Soil Contaminated with Heavy Metals (중금속 오염토양에서 두과 녹비작물의 단기재배 및 환원이 토양 화학성에 미치는 영향)

  • Kim, Min-Suk;Min, Hyungi;Lee, Byeongjoo;Kim, Jeong-Gyu;Lee, Sang-Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.3
    • /
    • pp.155-163
    • /
    • 2014
  • BACKGROUND: Recent studies for heavy metal stabilization in soil were mainly focused on finding out new materials and its efficiency. But, such a stabilization method can cause disturbance to soil, leading improper environment for agriculture. The object of this study was to demonstrate the effect of the incorporation of green manure crops on heavy metal-contaminated soil. METHODS AND RESULTS: Soil contaminated with heavy metals was collected from the agricultural soils affected by the abandoned mine. Lime stone was selected and treated to contaminated soil. Three kinds of legume green manure crops; Alfalfa (Medicago sativa), Hairy vetch (Vicia villosa), Red clover (Trifolium pratense) were subsequently cultivated in greenhouse condition. It was found that lime stone increased soil pH and decreased the amount of heavy metal absorption by green manure. The application of green manure residues on soil increased soil pH and inorganic nitrogen. CONCLUSION: The C/N ratio of three green manures was low, indicating fast decomposition rate, resulting in nitrogen supplement, consequently. Considering the point that the soil was used for agricultural purpose, it was recommended that hairy vetch and red clover were preferred. Nevertheless, the heavy metal availability was also increased. Thus, it seemed that further study was needed to confirm that how long maintain a phenomenon.

Studies on Heavy Metal Contamination of Agricultural Products, Soils and Irrigation Waters in Abandoned Mines (폐광산지역 농산물, 토양 및 농경수의 중금속오염에 관한 연구)

  • 김미혜;소유섭;김은정;정소영;홍무기
    • Journal of Food Hygiene and Safety
    • /
    • v.17 no.4
    • /
    • pp.178-182
    • /
    • 2002
  • This study was conducted to estimate the status of heavy metal contamination in agricultural products (n = 280), soils (n = 280), and irrigation waters (n = 48) in abandoned mines & normal farm lands (n = 8). The samples were digested with acids, then analyzed fur the contents of lead (Pb), cadmium (Cd), copper (Cu), mercury (Hg), arsenic (As) and chrome (Cr) by an inductively coupled plasma spectrometer (ICP) and graphite- atomic absorption spectrophotometer (AAS). The contents of Hg were determined using a mercury analyzer. Abandoned mines had soils with higher contents of heavy metals except Cr and irrigation waters with higher heavy metals except Hg, compared to those of normal farmlands. The contents of heavy metals in agriculture products varied depending types of products. Agricultural products in abandoned mines generally showed with higher contents of heavy metals except Cu, compared to those of normal farmlands. There was no significant relationship in heavy metal contents between agricultural products and soils (p > 0.05). It is suggested that heavy metals of agricultural products and soils in abandoned mines should be continuously monitored.

Detection of Heavy Metal Ions in Aqueous Solution Using Direct Dye Chemosensors

  • Heo, Eun-Yeong;Ko, Young-Il;Bae, Jin-Seok
    • Textile Coloration and Finishing
    • /
    • v.21 no.5
    • /
    • pp.51-57
    • /
    • 2009
  • Since heavy metal pollution is a significant global environmental problem and very dangerous to human health, the improved methods for detecting heavy metals are required recently. Colorimetric chemosensors are now considered as one of the most effective analytical method used in the environment monitoring. New direct dyes having the function of colorimetric chemosensors were synthesized. When metal ions such as $Al^{3+}$, $Ca^{2+}$, $Cd^{2+}$, $Cr^{3+}$, $Cu^{2+}$, $Fe^{2+}$, $Fe^{3+}$, $Hg^{2+}$, $Li^+$, $Mg^{2+}$, $Na^+$, $Ni^{2+}$, $Pb^{2+}$ and $Zn^{2+}$ were added each solution of new direct dyes, the color of solution was changed and can be easily detected with naked eyes without expensive experimental equipment such as atomic absorption spectrometer (AAS) or inductively coupled plasma?mass spectrometer (ICP-MS). The new benzidine analogues were diazotized and reacted with couplers such as H-acid, J-acid, Chromotropic acid, Nevill-winther acid and gamma acid to synthesize new direct dyes. The structures of the new direct dyes were confirmed by high resolution mass spectrometer (FAB ionization) and evaluated with UV-Vis spectroscopy. The UV-VIS spectroscopy was measured for the dye solutions by adding various concentrations of metal ions. It was observed that the absorbance in UV-Vis spectra was changed as the heavy metal ions were added.

Growth and Heavy Metal Absorption Capacity of Aster koraiensis Nakai According to Types of Land Use (토지이용 형태별 벌개미취의 생육 및 중금속 흡수능)

  • Ju, Young-Kyu;Kwon, Hyuk-Jun;Cho, Ju-Sung;Shin, So-Lim;Kim, Tae-Sung;Choi, Su-Bin;Lee, Cheol-Hee
    • Korean Journal of Plant Resources
    • /
    • v.24 no.1
    • /
    • pp.48-54
    • /
    • 2011
  • This study was performed to analyze the possibility of using Korean native Aster koraiensis Nakai for phytoremediation at various fields. A. koraiensis was cultivated at paddy, upland and forest soils contaminated with heavy metals. After 8 weeks of cultivation, and growth and its absorbing capacity of heavy metals were analyzed. The results showed that A. koraiensis was grown well even at the soil highly contaminated with heavy metals, which means it has a tolerance to heavy metals. As analysis results of arsenic, cadmium, copper, lead and zinc contents absorbed from various soils contaminated with heavy metals, heavy metal absorbing capacity of A. koraiensis was depending on the heavy metal contents in the soils and soil property. In case of arsenic, cadmium and copper, heavy metal accumulation capacities of Aster koraiensis were much influenced by contents of heavy metals in the soils. Absorbing capacity of plants was increased when heavy metal contents in the soils were high. Lead absorbing capacity was depending more on soil property than lead contents in the soil, and was great at sandy soil of forest. Zinc absorbing capacity was influenced by both soil properties and Zn contents in the soil, was increased at paddy soil contaminated with high concentrations of heavy metals and upland soils. In general, A. koraiensis had a tolerance to heavy metals and showed great absorbing capability of heavy metals. So A. koraiensis can be used as a good landscape material for phytoremediation at various soils contaminated with heavy metals.

Changes of Heavy Metal Concentration in Rat's Tissues and Urine after Cd-administration (카드뮴 투여에 의한 흰쥐 조직 및 소변내 중금속 농도의 변화)

  • Cheon, Gi-Jeong;Kim, Bong-Hui
    • YAKHAK HOEJI
    • /
    • v.40 no.5
    • /
    • pp.501-506
    • /
    • 1996
  • This study was conducted to investigate on the changes of copper and zinc concentration in rat's tissues and urine after cadmium administration with atomic absorption spectroph otometric method. It is found that cadmium appeared to cause a change in the behavior of copper and zinc in vivo system even during 1 month after cadmium treatment.

  • PDF

Survey on Contents of Heavy Metals in Shellfishes (패류중의 중금속 함량조사)

  • 한천길;김진곤;김명희
    • Environmental Analysis Health and Toxicology
    • /
    • v.4 no.1_2
    • /
    • pp.47-53
    • /
    • 1989
  • This survey was performed to find out the heavy metal concentrations in shellfishes. Experimental subjects were 60 cases in 10 kinds of shellfishes purchased in markets in july, august, 1987 and february, 1988. Contents of lead, cadmium, zinc, copper and mangangese were determined by atomic absorption spectrophotometer and mercury contents by mercury analyzer. The results were as follows: The range of mercury contents in shellfishes was from ND to 0.22 ppm, cadmium from 0.22 to 2.46 ppm, lead from 0.09 to 4.90 ppm, copper from 0.62 to 12.45 ppm, manganese from 0.09 to 13.8 ppm and zinc from 4.01 to 129.96 ppm.

  • PDF

A Study on the Crops Pollution with Heavy Metal (농작물중(農作物中) 중금속오염도(重金屬汚染度)와 1일섭취량(日攝取量) 및 허용기준설정(許容基準設定)에 관(關)한 연구(硏究))

  • Yum, Yong-Tae;Bae, Eun-Sang;Yun, Bae-Joung
    • Journal of Preventive Medicine and Public Health
    • /
    • v.13 no.1
    • /
    • pp.3-12
    • /
    • 1980
  • Certain heavy metals which may lead peoples to poisonous status are widely used in industry and their uses have been increasing along with rapid industrialization of this country. Such an increasement of metal uses aggravates the status of environmental pollution affecting foodstuffs which are the most important life supporting factor of animal and humanbeing. Concerning the safety measures to minimize food-borne transmission of such hazardous metals, surveillance is the backbone of them and probably more so with a potential problem such as intoxication. Theoretically, this surveillance should include the determination of levels of heavy metal toxicants in foods, the determination of food consumption patterns and typical total diet, and the estimation of total load of the metal contaminant from all sources of exposure including air, water, and occupational sources. In recent year, actually, such estimates on the total daily intake of some heavy metals from foods have been made in several developed countries and a wide variation of date by season, locality, and research method was recognized. Also in this country, this kind of research data is vitally needed to make up for the serious shortage or lack of references to estimate the total amount of heavy metal intake of the people. In this study, a modification model for estimation of the total daily intake of cadmium copper, nickel, zinc, and lead through foods was applied and concentrations of the above metals in crops cultivated in this country were measured with atomic absorption spectro photometer to get the following results. 1. Level of heavy metal concentration in crops Generally, the levels of such metals in essential crops such as rice, cucumber, radish. chinese cabbage, apple, pear, grape, and orange are similar or lower than those in Japan and other developed countries. By the way, a striking result on cadmium concentration was increasement of its concentration in rice from $0{\sim}0.035ppm$ in 1970 to 0.11ppm in this study. However, the value is still far below the. Japanese Permissible Lebel of 1.0ppm. 2. Estimation of total daily intake per capita from foods A new model for estimation was devised utilizing levels of metal concentration in foods, amount of food consumed, and other food factors. Based on the above method, the daily intake of cadmium was estimated to be $70.53{\mu}g/man/day$ in average which was as high as the Limit Value of ILO/WHO(up to $71.4{\mu}g/man/day$). Also, 3.89mg of Zinc, 1.65mg of cuppor, 0.32mg of lead were given as the total daily intake per capita by this research. 3. Efficacy of washing or skinning to decrease the amount of metals in crops After washing the crops sufficiently with commercial linear alkylate sulfonate, the concentration of heavy metals could be reduced to $50{\sim}80%$ showing decreasement rate of $20{\sim}50%$. Also, after skinning the fruits, decreasement rate of the heavy metal concentration shelved $0{\sim}50%$.

  • PDF

Purification process and reduction of heavy metals from industrial wastewater via synthesized nanoparticle for water supply in swimming/water sport

  • Leiming Fu;Junlong Li;Jianming Yang;Yutao Liu;Chunxia He;Yifei Chen
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.441-449
    • /
    • 2023
  • Heavy metals, widely present in the environment, have become significant pollutants due to their excessive use in industries and technology. Their non-degradable nature poses a persistent environmental problem, leading to potential acute or chronic poisoning from prolonged exposure. Recent research has focused on separating heavy metals, particularly from industrial and mining sources. Industries such as metal plating, mining operations, tanning, wood and chipboard production, industrial paint and textile manufacturing, as well as oil refining, are major contributors of heavy metals in water sources. Therefore, removing heavy metals from water is crucial, especially for safe water supply in swimming and water sports. Iron oxide nanoparticles have proven to be highly effective adsorbents for water contaminants, and efforts have been made to enhance their efficiency and absorption capabilities through surface modifications. Nanoparticles synthesized using plant extracts can effectively bind with heavy metal ions by modifying the nanoparticle surface with plant components, thereby increasing the efficiency of heavy metal removal. This study focuses on removing lead from industrial wastewater using environmentally friendly, cost-effective iron nanoparticles synthesized with Genovese basil extract. The synthesis of nanoparticles is confirmed through analysis using Transmission Electron Microscope (TEM) and X-ray diffraction, validating their spherical shape and nanometer-scale dimensions. The method used in this study has a low detection limit of 0.031 ppm for measuring lead concentration, making it suitable for ensuring water safety in swimming and water sports.