• Title/Summary/Keyword: heavy ion CT

Search Result 7, Processing Time 0.02 seconds

Target Size Dependence of Spatial Resolution in Heavy Ion CT

  • Ohno, Yumiko;Kohno, Toshiyuki;Kanai, Tatsuaki;Sasaki, Hitomi;Nanbu, Syuya
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.94-96
    • /
    • 2002
  • In order to achieve the radiotherapy more precisely using highly energetic heavy charged particles, it is important to know the distribution of the electron density in a human body, which is highly related to the range of charged particles. We can directly obtain the 2-D distribution of the electron density in a sample from a heavy ion CT image. For this purpose, we have developed a heavy ion CT system using a broad beam. The performance, especially the position resolution, of this system is estimated in this work. All experiments were carried out using the heavy ion beam from the HIMAC. We have obtained the projection data of polyethylene samples with various sizes using He 150 MeV/u, C 290 MeV/u and Ne 400 MeV/u beams. The used targets are the cylinders of 40, 60 and 80 mm in diameter, each of them has a hole of 10 mm in diameter at the center of it. The dependence of the spatial resolution on the target size and the kinds of beams will be discussed.

  • PDF

The Performance of Heavy Ion CT System with Fluorescent Screen and CCD Camera

  • Tomida, Tetsuya;Nishimura, Katsuyuki;Abe, Shinji;Sato, Hitoshi;Muraishi, Hiroshi;Inada, Tetsuo;Tazawa, Shuichi;Kanai, Tatsuaki;Yusa, Ken;Kawachi, Kiyomitsu
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.432-435
    • /
    • 2002
  • We have developed and proposed the heavy ion CT system which consists of fluorescent screen and CCD camera equipped with image intensifier. In our system, we have measured the residual range of particles that passed a phantom and reconstructed the CT image for the distribution of relative stopping power by filtered back projection method with Shepp '||'&'||' Logan filter. The heavy ion $\^$12/C accelerated up to 400 MeV/u by HIMAC (Heavy Ion Medical Accelerator in Chiba) was used. Intensity of the beam output changes like macro pulse, the period being 3.3 sec and the width being 2 sec. The series of data was acquired in synchronizing with the pulse, leading to the improvement of S/N in the CT image. The fundamental performance was experimentally evaluated in the proposed system. The spatial resolution was estimated to be about 1 mm and the density resolution (electron density referred to water) to be about 0.01.

  • PDF

The Noise Power Spectrum in Heavy Ion CT Based on Measurement of Residual Range Distribution

  • Yasuda, Naruomi;Abe, Shinji;Nishimura, Katsuyuki;Tomita, Tetsuya;Sato, Hitoshi;Muraishi, Hiroshi;Kanzaki, Takayuki;Inada, Tetsuo;Fujisaki, Tatsuya
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.228-230
    • /
    • 2002
  • The relative electron density resolution was discussed by the noise power spectrum (NPS) in the heavy ion CT image. The heavy ion beam $\^$12/C accelerated up to 400MeV/u by RIMAC was used in this study. The two-dimensional (2-D) NPS in the CT image was obtained from the one-dimensional (1-D) NPS of the measured residual range distribution of water phantom for single projection, and the noise variance in the CT image was calculated from 2-D NPS. The technique used in the reconstruction was the filtered back-projection method with Shepp-Logan filter. The calculated value suggests the result of our previous works using the density resolution phantom, assuming that the relative electron density resolution is twice the standard deviation. Therefore, the estimation of the noise in CT images by 2-D NPS obtained the measured residual range distribution is the useful method.

  • PDF

Research Activities at National Institute of Radiological Sciences in Development of Radiological Apparatus

  • Endo, Masahiro
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.3-5
    • /
    • 2002
  • This paper describes research activities at National Institute of Radiological Sciences (NIRS), Japan in development of radiological apparatus, which cover 4-dimensinal (4D) CT, next-generation PET and several progresses in heavy-ion irradiation system at HIMAC (Heavy Ion Medical Accelerator in Chiba).

  • PDF

Scintillation Detector System for Heavy Ion CT

  • Ohno, Yumiko;Kohno, Toshiyuki;Matsufuji, Naruhiro;Kanai, Tatsuaki;Sakauchi, Syunsuke
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 1999.11a
    • /
    • pp.372-375
    • /
    • 1999
  • We have developed a new heavy ion CT detector system for the use of a fan beam. The system consists of two sets of a position sensitive detector and an energy detector. The calibration runs were carried out using a $\^$12/C beam of 1mm in diameter with the energies of 290 MeV/u, 254.5 MeV/u, and 215.8 MeV/u. The spatial resolution of 1.1 mm and the energy resolution of about 1% were achieved.

  • PDF

Methotrexate-Incorporated Polymeric Micelles Composed of Methoxy Poly(ethylene glycol)-Grafted Chitosan

  • Jeong, Young-Il;Seo, Dong-Hyuk;Kim, Don-Gon;Choi, Chang-Yong;Jang, Mi-Kyeong;Nah, Jae-Woon;Park, Yoon-Kyung
    • Macromolecular Research
    • /
    • v.17 no.7
    • /
    • pp.538-543
    • /
    • 2009
  • In this study, methotrexate (MTX)-encapsulated polymeric micelles using methoxy poly(ethylene glycol) (MPEG)-grafted chitosan (ChitoPEG) copolymer were prepared. The MIX-incorporated polymeric micelles of ChitoPEG copolymer has a particle size of around 50-100 nm. In 1H nuclear magnetic resonance (NMR) study, the specific peaks of MTX disappeared in heavy water ($D_2O$) and only the specific peak of MPEG was observed, while all of the peaks were confirmed in dimethyl sulfoxide (DMSO). These results indicated that MTX was complexed with chitosan and then formed an ion complex inner-core of the polymeric micelle in an aqueous environment. The drug contents of the polymeric micelle were around $4{\sim}12%$ and the loading efficiency of MTX in the polymeric micelles was higher than 60% (w/w) for all of the formulations. The cytotoxicity of MIX and MTX-incorporated polymeric micelle against CT26 tumor cells was not significantly changed.