• Title/Summary/Keyword: heavy impact sound

Search Result 140, Processing Time 0.028 seconds

Improvement of evaluation method for impact sound reduction performance of floor coverings (바닥 상부 마감재의 충격음 저감성능에 대한 평가방법 개선)

  • Jin-Yun Chung;Han-Sol Song;Guk-Gon Song;Yong-Jin Yoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.2
    • /
    • pp.161-167
    • /
    • 2023
  • Recently, floor impact sound has become a serious social problem in Korea. There is an increasing need to improve floor impact sound performance using floor covering installed on the floor of apartment houses. KS F ISO 717-2 and KS F 2863 require measurement under conditions in which the resilient material is not installed. But most apartment houses in Korea install resilient materials to reduce floor imapct sound. The performance evaluation method of floor covering should provide reduced performance for use by residents of apartment houses with resilient materials. Therefore, this paper proposes a reduction performance evaluation under the conditions in which a resilient material is installed to verify the performance of floor covering.

Evaluation of Door Closing Sound by Using Semantic Difference Method (승용차 문닫이 음질의 평가기법에 관한 연구)

  • 박현근;김정태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.67-79
    • /
    • 1998
  • Inthe study, a method to evaluate the door closing sound has been developed. Based on the factor analysis, various adjective pairs which describe meaning of the door impact sound have been differentiated. This approach, called Semantic difference(SD) method, was originally developed in linguistics research on order to compare diverse mother tongue. This paper introduces at first how the door sound os generated and transmitted. After that, a factor analysis which is a tool of SD method is implemented to door closing sound for 12 domestic and 1 foreign car models. During investigation, the examined models are categorized into small, medium and luxurious size automobiles. The adjective pairs which attritbute to the door quality have been factorized into three group : expensive/ smooth, powerful/ heavy, and modern/dull. It turns out that the first factor : expensive/ smooth plays the most important role in door closing sound quality.

  • PDF

Prediction of Heavy-Weight Floor Impact Sound in Multi-unit House using Finite Element Analysis (유한요소해석을 이용한 공동주택의 중량충격음 예측)

  • Mun, Dae-Ho;Lee, Sang-Hyun;Hwang, Jae-Seung;Baek, Gil-Ok;Park, Hong-Gun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.645-657
    • /
    • 2015
  • In this study floor impact noise and structure acceleration response of bare concrete slabs were predicted by using Finite Element Analysis(FEA). Prediction results were compared with experimental results to prove the accuracy of numerical model. Acoustic absorption were addressed by using panel impedance coefficients with frequency characteristics and structural modal damping of numerical model were applied by modal testing results and analysis of prediction and test results. By using frequency response function, the floor acceleration and acoustic pressure responses for various impact sources were calculated at the same time. In the FEA, the natural frequencies and the shapes of vibration and acoustic modes can be estimated through the eigen-value analysis, and it can be visually seen the vibration and sound pressure field and the contribution of major modes.

A Study on the Acoustic Performance Indication Standards of Apartment Housing Performance Grade Indication System (공동주택 성능등급 표시제도 상의 음성능 표시기준 고찰)

  • Yang, Kwan-Seop;Kim, Kyoung-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1252-1255
    • /
    • 2006
  • The government has enforced Housing Performance Grade Indication System (Article 21, Paragraph 2 of Housing Act) starting January 2006 for the purpose of giving users in hope of toying an apartment opportunities to select housing based on personal preferences by providing information on housing performance at the time of tenant recruitment announcement as well as securing desirable environment (comfort) by encouraging construction companies to build housing of the indicated performance level. The acoustic performance indication items include three items such as floor impact isolation performance(light weight impact sound, heavy weight impact sound), bathroom noise and insulation performance of boundary walls between households. This paper explains the background, the basis of creation and evaluation method focused on the acoustic environment performance helping for the developer of technique and a staff in charge of construction business who cope with this system.

  • PDF

Characteristics of Transmission of Floor Vibration and Floor Impact Noise Due to Human Activities (거주자의 거동으로 발생하는 바닥진동의 층간 전달 및 바닥충격음의 음압레벨 특성 평가)

  • Lee, MinJung;Choi, HyunKi
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.1
    • /
    • pp.5-13
    • /
    • 2017
  • Noise complaints among neighbors in apartment building are mainly caused by floor impact noise that is structure born noise due to occupant induced floor vibration. To control this noise problems many researchers have investigated floor systems and finishing materials. Light-weight impact noise affects by finishing materials, but heavy-weight impact noise induced by heel impacts during normal walking or jumping of children is concerned with structural system and floor vibration. To figure out the characteristics of floor impact noise and transmission of floor vibration due to human activities, vibration tests were conducted in apartment buildings. Impact hammer, heel drop and walking activities were loaded at center of upstairs living room, and accelerations of slabs for both upstairs and downstairs and sound pressure levels for downstairs were measured. The acceleration ratio of transmitted floor vibration to downstairs and human induced vibration in upstairs was between 0.5 and 1.0 according to slab size, wall, and load type. And floor impact noise occurred in the range of natural frequency of slab.