• 제목/요약/키워드: heavy element

검색결과 624건 처리시간 0.025초

V-groove 박판의 FCAW와 EGW 공정에 따른 변형에 미치는 공정인자 영향 (Process Parameter Effect on Deformation of a V-groove Thin Plate for FCAW and EGW)

  • 한주호;전재승;박철성;오종인;윤진오;이정수
    • Journal of Welding and Joining
    • /
    • 제31권1호
    • /
    • pp.65-70
    • /
    • 2013
  • Finite element analysis and welding experiments were performed to evaluate deformation aspect for Flux Cored Arc Welding(FCAW) and Electro Gas Welding(EGW). Numerical researches of FCAW and EGW were performed considering the difference of number of welding pass and welding direction to arc flow. To perform the numerical study of FCAW and EGW, number of welding pass and welding direction to arc flow were considered in the finite element model. FCAW process requires multi pass and its welding direction is vertical to welding torch. On the other hand, EGW process requires single pass and its welding direction is parallel to welding torch. The difference of welding direction and heat input was considered in the finite element analysis. In FCAW process, Goldak's double ellipsoidal heat input model was adopted. In the EGW process, Hemi-spherical power density distribution was adopted. In the results of experiment and finite element analysis, angular deformation of FCAW process is larger than that of EGW process.

정밀가공을 위한 20,000rpm 중절삭 스핀들 해석에 관한 연구 (A Study on the Analysis of 20,000rpm Heavy-Cutting Spindle for Precision Machining)

  • 오남석;김동현;이춘만
    • 한국정밀공학회지
    • /
    • 제32권1호
    • /
    • pp.57-61
    • /
    • 2015
  • A spindle unit is very important in machine tools. It has a direct effect on machining accuracy. The static and dynamic characteristics of the spindle unit should be considered in the initial design stage for manufacturing of precision product. This study describes an investigation for deriving design stability of a 20,000rpm heavy-cutting spindle for precision machining. Static and dynamic characteristics of the spindle, such as deformation, stress, natural frequency and mode shapes are analyzed using finite element analysis. The 20,000rpm heavy-cutting spindle is confirmed that it is successfully designed through finite element analysis.

제올라이트를 이용한 중금속 원소들의 흡착 특성 (Adsorption Properties of Heavy Metal Elements using Zeolite)

  • 심상권;박진태;김태삼
    • 분석과학
    • /
    • 제13권1호
    • /
    • pp.96-100
    • /
    • 2000
  • 제올라이트를 사용하여 폐수로부터 중금속 원소들을 제거하기 위하여 조건을 변화시키며 흡착 특성을 조사하였다. 시험한 원소는 독성이 강하여 중금속 오염과 관련이 많은 Cd, Cr, Cu, Pb의 네 가지 중금속 원소들을 선택하였다. 흡착에 영향을 주는 요소로서 제올라이트의 양, 흡착 시간 그리고 pH를 변화시키며 흡착에 의한 제거 효율을 측정하였다. 중금속 용액 50 mL에 대하여 투입된 제올라이트는 2 g 정도가 경제적인 분량이며, 흡착 시간은 30분 정도 반응시키면 최대 흡착을 얻을 수 있었다. Cr과 Cu는 전반적으로 높은 흡착율을 나타내며 낮은 pH 영역에서는 흡착효율이 보다 증가하였다. Cd와 Pb는 95% 내외의 약간 낮은 흡착율을 보이며, Cd는 pH가 낮으면 흡착율이 감소하는 특이한 경향을 보였다.

  • PDF

열간압연 폭압하시 슬래브 변형거동의 유한요소해석 (Finite Element Analysis of Slab Deformation under the Width Reduction in Hot Strip Mill)

  • 천명식;정제숙;안익태;문영훈
    • 소성∙가공
    • /
    • 제12권7호
    • /
    • pp.668-674
    • /
    • 2003
  • Rigid-plastic finite element analyses on the deformation of slabs at various width reductions have been performed. By using commercial finite element code, dog-bone profile, crop profile and the longitudinal width profile after edging and Horizontal rolling have been analysed. The deformation behavior of slab for the heavy edger mill has also been compared with that for the sizing press. From the deformation analyses, it was found that the sizing press-horizontal rolling method is more efficient in width reduction than that of heavy edger mill-horizontal rolling. The results of finite element analyses fer the deformation of slab were well confirmed by the actual operational data. It was found that the amount of width variation after sizing and rolling is about 5∼10mm.

Development of a Rigid- Ended beam Element and a Simplified 3-Dimensional Analysis Method for Ship Structures

  • Seo, Seung-Il;Lim, Sung-Joon
    • Journal of Ship and Ocean Technology
    • /
    • 제3권3호
    • /
    • pp.13-24
    • /
    • 1999
  • In this paper, a 2-dimensional novel beam element is developed and a method to replace the 3-dimensional analysis with 2-dimensional analysis is proposed. The developed novel beam element named rigid-ended beam element can consider the effect of three kinds of span points within one element, which was impossible in modeling with the ordinary beam element. Calculated results for the portal frame using the rigid-ended beam element agree with the results using membrane element. And also, the proposed simplified 3- dimensional analysis method which includes two step analysis using influence coefficients shows good accuracy. Structural analysis using the rigid-ended beam element and the simplified 3-dimensional method is revealed to have good computing efficiency due to unnecessity of the elements corresponding to the brackets and simplification of 3-dimensional analysis.

  • PDF

Comparative Study on Collision Strength of LNG Carriers

  • Choe, Ick-Hung;Kim, Jae-Hyun;Ahn, Ho-Jong;Kim, Oi-Hyun
    • Journal of Ship and Ocean Technology
    • /
    • 제5권3호
    • /
    • pp.36-44
    • /
    • 2001
  • The collision energy absorbing characteristics of side structure of the LNG carriers which have the cargo containment systems of the spherical and the membrane types are compared. A failure mechanism of the double hull side structures of 130, 000 $m^3$ class LNG carriers under sideways collision event has been simulated by using the detailed finite element calculations. In ship collision analysis, the finite element method based on explicit time integration has been use[1 with much success. Finite element modeling techniques for detail description of structural members antral ship motion regarding the dynamic behavior allowed to investigate the effect of bow shape and the initial contact position on side shell of collided ship. In the numerical simulations of the ship-to-ship sideways collision, the effect of the colliding bow shapes and the change of the colliding ship draft are investigated. The critical collision energy which is absorbed by a side structure of a collided ship until the fore-end of colliding ship arrives at the boundary of the cargo tank is calculated. The critical speed of specified colliding ships which can not penetrate the boundary of the LNG cargo tank of the collided ship under collision accident if evaluated.

  • PDF

광산폐수 속의 중금속의 분석과 특성 (Analysis and Characteristics of Heavy Metals in Mines Waste Water)

  • 이경호
    • 동굴
    • /
    • 제92호
    • /
    • pp.9-18
    • /
    • 2009
  • A number of closed metal mines act as point sources of contamination on nearby streams, soils and plants in our country. The contamination of twelve decomposed samples had earned from nine closed metal mines had been evaluated by TEA-3000. The contents of heavy metal with ion fraction exchange and carbonate fraction forms had been showed that the speciation of heavy metals represented with easy solubility, mobility and bioavailable of plants, and in case of sulfide compounds and organic residuals forms are related with the speciation of metals which may be stable forms because of strong bindable capacity. Also heavy metals elements in mosts of mines got with relative stable within crystal lattice, but results of trace element analyser showed that, in the most of tailings from mine areas, large portions of concentration of heavy metals were explained as stable from, sulfides/ organics and residual. In tailing from Imchun mines, the concentrations extracted by water were relatively high as compared with other mine areas whose total concentrations were very high because of large quantities of exchangeable ions and carbonates and low soil pH. Danger Index (D.I.) suggested in this study was based on the cumulative concentrations of step 1 and 2 from the result of trace element analyser. When the soil pH was considered, this index became better indicator to determine the priority for the remediation of mine area.

유한 요소법을 이용한 나 슬래브의 2차원 바닥 충격진동 해석 (2-Dimensional Floor Impact Vibration Analysis in Bare Reinforced Concrete Slab Using Finite Element Method)

  • 서상호;전진용
    • 한국소음진동공학회논문집
    • /
    • 제15권5호
    • /
    • pp.604-611
    • /
    • 2005
  • The relationship between floor impact sound and vibration has been studied by field measurements, and the vibration modal characteristics have been analyzed. Vibration levels impacted by a standard heavy-weight impact source have been predicted according to the main design parameters using finite element method. Experimental results show that the dominant frequencies of the heavy impact sounds range below 100 Hz and that they are coincident with natural frequencies of the concrete slab. In addition, simple 2-dimensional finite element models are proposed to substitute 2 types of 3-dimensional models of complicated floor structural slabs those by The analytical result shows that the natural frequencies from first to fifth mode well correspond to those by experiments with an error of less than $12\%$, and acceleration peak value iscoincident with an error of less than $2\%$. Using the finite element model. vibration levels areestimated according to the design Parameters, slab thickness, compressive strength, and as a result, the thickness is revealed as effective to increase natural frequencies by $20\~30\%$ and to reduce the vibration level by 3$\~$4 dB per 30 mm of extra thickness.

완충재 유무에 따른 표준중량충격원에 의한 콘크리트 바닥 구조의 소음 및 진동 특성 (Noise and Vibration Characteristics of Concrete Floor Structures Using Resilient Materials Driven by Standard Heavy Impact Source)

  • 송희수;전진용;서상호
    • 한국소음진동공학회논문집
    • /
    • 제14권8호
    • /
    • pp.661-667
    • /
    • 2004
  • The characteristics of noise and vibration by a heavy impact source was studied. The triggering method was used for increasing the reliability and stability to measure the level of sound pressure. sound intensity and vibration acceleration. A simple finite element model and a rigid body analysis method were suggested to calculate the natural frequencies of the multi-layer floor system. The results show that the resilient materials decrease the natural frequency of the reinforced concrete slab, make a resonance with dominant driving frequency in the low frequency region, and increase the vibration and noise level. A simple finite element model and rigid body models was suggested to calculate the natural frequencies of the floor systems.

슬래브 두께에 따른 표준실험동의 중량충격음 특성 (Heavy-weight Floor Impact Sound Characteristics of Standard Laboratory by Slab Thickness)

  • 정영;송희수;전진용;김진수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.103-108
    • /
    • 2004
  • In this study, examined heavy-weight floor impact sound to structure that have slab thickness of 4 form at a standard laboratory through noise and vibration measured. The results show that the nature Natural frequency increased according to change of thickness of each slab by finite element analysis, and acceleration value decreased. Results of measurements of noise and vibration at a standard laboratory, the slab 210, 240mm structures was construed result such as finite element analysis but the slab 150, 180mm structures is construed that influence in vibration acceleration level because edge condition has condition that contact to ground. Therefore, in modelling process for analysis, is thought that need that condition analyzes examining element influencing about structure that contact to ground.

  • PDF