• Title/Summary/Keyword: heating jang

Search Result 532, Processing Time 0.024 seconds

An Experimental Study of Precast Concrete Alters Cement Types of High-Strength Concrete (시멘트종류를 변화시킨 프리캐스트 고강도 콘크리트의 실험적 연구 - 압축강도특성을 중심으로 -)

  • Park, Heung-Lee;Ki, Jun-Do;Kim, Sung-Jin;Lee, Hoi-Keun;Park, Byung-Keun;Jung, Jang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.65-68
    • /
    • 2009
  • Recently, as architectural concrete structures become high-rise and megastructured, concrete become high-strengthened and, by ensuring products of more stability, and rationalization of construction are required.large cross-sectional precast concrete members such as columns show large temperature increase in manufacturing process not only by external heating but also by concrete itself's hydration heating. Therefore, it is expected that specimen for management to predict strength and compression strength of precast concrete member shows different strength characteristics. Concerning this, in order to suggest strength characteristics of high strength mass concrete suitable for precast concrete application, this study comprises the inclusive investigations on the relations between core strength and the strength characteristics per member cross-section dimensional value and per water-bonding material ratio value.

  • PDF

Pellet Made of Agricultural By-product and Agricultural Pellet Boiler System (농림부산물 원료 펠릿 및 농업용 펠릿 난방기)

  • Kang, Y.K.;Ryou, Y.S.;Kcang, G.C.;Kim, J.G.;Kim, Y.H.;Jang, J.K.;Lee, H.M.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.252.2-252.2
    • /
    • 2010
  • Biomass is considered to be a major potential fuel and renewable resource for the future. In fact, there is high potential to produce the large amount of energy from biomass around the world. In this study, to obtain basic data for practical application of wood pellet and wood pellet boiler system as heating system in agriculture, agricultural biomass resources were surveyed, pellet was made of agricultural by-product such as stem of rape, oat and rice, ricehusk and sawdust and wood pellet boiler system with capacity of 116 kW was manufactured and installed in greenhouse of $38.5m{\times}32m$. High heating value, bulk density and ash content of pellet made of agricultural by-product and efficiency and heating performance of this system was estimated. Rice straw was the largest agricultural biomass in 2005 and the total amount of rice straw converted into energy of $131.71{\times}10^{11}$ kJ. And in 2005, total amount of forest' by-product converted into energy of $29,277.05{\times}10^{11}$ kJ. High heating values of pellets made of agricultural by-products of stem and seed of rape, stem of oat, rice straw and rice husk were 16,034, 16,026, 16,089, 15,650, 15,044 kJ/kg respectively. High heating values of pellets made of agricultural by-products were 83.6% compared to that of wood pellet. Average bulk density of pellets made of agricultural by-products of stem and seed of rape, stem of oat, rice straw and rice husk was 1,400 $kg/m^3$. Ash contents of the pellets were 6.6, 7.0, 6.2, 5.5, 33% respectively. Ash content of rice husk pellet was the largest compared to other kind of pellets. To increase efficiency of agricultural pellet boiler, the boiler adopted secondary heat exchanger. The agricultural pellet boiler designed and manufactured in this study had high efficiency of 84.2% compared to the conventional agricultural pellet boiler, when water flow rate, exhaust gas temperature and average combustion furnace temperature were 39L/min, $180^{\circ}C$, $680^{\circ}C$ respectively. And pellet supplying and pausing time were 13, 43 seconds respectively. In March of 2010, prices of wood pellet, agricultural tax free diesel, diesel, kerosene were 350 won/kg, 811 won/L, 1,422 won/L, 976 Won/L respectively. Also in terms of energy, prices per same heating value were 77.8, 90.1, 158, 108.4 Won/Mcal. Energy saving rate of wood pellet was 16, 50, 39% compared to agricultural tax free diesel, diesel and kerosene respectively.

  • PDF

A Study on Heating of Hatching Eggs to Improve Hatchability : A Field Study (부화율 향상을 위한 종란의 가열방법에 관한 연구)

  • Kim, Tae-Sung;Lee, Hyun-Chang;Choi, In-Hag;Jang, Woo-Whan
    • Journal of Environmental Science International
    • /
    • v.23 no.7
    • /
    • pp.1367-1373
    • /
    • 2014
  • This study was conducted to evaluate the effects of heating hatching eggs on the number of day-old chicks, egg temperature and egg weight during extended storage, and to provide basic information for improving hatchability to livestock producers. Eggs (Hy-line) were subjected to the following treatments: "control": eggs were maintained in an incubator after storage for 8 days; "T1": eggs were preheated for 8 hours at $23.9^{\circ}C$ after storage for 8 days in a hatchery; "T2": eggs were initially heated for 8 hours at $37.8^{\circ}C$ in an incubator and then preheated for 8 hours at $23.9^{\circ}C$ in a hatchery after storage for 8 days. The results were as follows: First, at the end of the experiment, the total number of day-old chicks was higher in T1, followed by T2 and then the control. This indicated that chick hatchability may be improved when eggs are preheated. Second, compared with the control, the number of day-old female chicks was expected to be higher in treatments with pre-heating; however, the results indicated the opposite effect. Third, as storage time lengthened, the factor that influenced preheating (the main effect and interactions) was not egg weight but egg temperature measured in the upper, middle and bottom parts of incubator. The temperatures recorded in all treatments ranged from 37.97 to $38.40^{\circ}C$ in the upper parts of incubator, 37.80 to $38.26^{\circ}C$ in the middle parts of incubator, and 37.94 to $38.59^{\circ}C$ in the bottom parts of incubator over storage. In conclusion, preheating was very effective in improving hatchability, and egg temperature was the main factor affecting preheating and hatchability.

Efficient Prediction of Aerodynamic Heating of a High Speed Aircraft for IR Signature Analysis (적외선 신호 분석을 위한 고속 항공기의 공력가열에 관한 효율적 예측)

  • Lee, Ji-Hyun;Chae, Jun-Hyeok;Ha, Nam-Koo;Kim, Dong-Geon;Jang, Hyun-Sung;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.11
    • /
    • pp.768-778
    • /
    • 2019
  • The ability to calculate aerodynamic heating and surface temperature is essential to ensure proper design of aircraft components in high speed flight. In this study, various empirical formulas for efficiently calculating aerodynamic heating of aircraft were first analyzed. A simple computational code based on empirical formulas was developed and then compared with commercial codes; ANSYS FLUENT based on the Navier-Stokes-Fourier equation, and ThermoAnalytics MUSES based on an empirical formula. The code was found to agree well with the results of FLUENT in the wall and stagnation point temperatures. It also showed excellent agreement with MUSES, within 1% and 5% in temperature and heat flux, respectively.

Underground Heat Transfer Characteristics of the Underground Heating System for Soil Sterilization in Greenhouse (온실 내 토양소독을 위한 지중난방시스템의 지중 열전달 특성)

  • Park, Kyung-Kyoo;Ha, Yu-Shin;Hong, Dong-Hyuck;Jang, Seung-Ho;Kim, Jin-Hyun
    • Journal of Biosystems Engineering
    • /
    • v.35 no.2
    • /
    • pp.108-115
    • /
    • 2010
  • This study was conducted to estimate the optimum temperature and required time for soil sterilization when heated water was circulated through underground heating pipes in the greenhouse which solar heat was influenced to the temperature of soil during the summer day. Two different types of heating pipes were used for the experiment. One was a polyethylene pipe(XL) and the other was a corrugated ring shaped stainless steel pipe(STS). The results of the studies were summarized as follows; By measuring the thermal characteristics of the XL and STS, it was examined that the average temperature differences of the inlet and outlet were $8.5^{\circ}C$ and $13.3^{\circ}C$, the average flowrates were 15.3 L/min and 5.6 L/min, and the average radiation powers were 9.1 kW and 4.1 kW, respectively. As results of the regression analysis of underground temperatures, when average soil temperature was$35^{\circ}C$, an average water temperature was $80^{\circ}C$, and XL was used, it was estimated that the possible heat transfer distance, the required time for heat transfer and heat flux to reach the underground temperature of $60^{\circ}C$ were 300 mm, 230 hours, and $7.57kW/m^2$, respectively.

Properties of Fire Resistance in Tunnel Concrete According to the Changes of Heating Curve (온도가열곡선 변화에 따른 콘크리트의 내화특성)

  • Pei, Chang-Chun;Noh, Sang-Kyun;Lee, Chan-Young;Lee, Jong-Suk;Lee, Jang-Hwa;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.705-708
    • /
    • 2008
  • To obtain tunnel concrete safety in case of fire, this study analyzed fire proof characteristics by fire proof method change, and the results are as follows. As a fire proof characteristics by RABT temperature heating curve, plain concrete experienced severe spalling by initial extremely high temperature. In view of fire proof method, in the cases of organic fiber mixing method and board method, spalling was prevented, and in the case of spray method, severe spalling of over 100mm depth occurred along with exposure of structural concrete including spray coat by heat stress, etc while metal lath, the stiffener, falls off. As for fire proof characteristics by RWS temperature heating curve, in case of organic fiber inclusion, concrete surface experienced fusion of within 5mm, while in the case of spray method, spray coat was severely spalled to a depth of over 100mm causing structural body concrete to expose its reinforcement, and also in the case of board method, board was fused by high temperature, causing structural body concrete be directly exposed to high temperature, which triggered overall fall-off phenomenon, so in such extraordinary high temperature heating condition, establishment of special fire proof measures is needed.

  • PDF

A Study on Analysis for Energy Demand of the Heating, Cooling and Lighting in Office Building with Transparent Thin-film a-Si BIPV Window (투광형 박막 BIPV 창호 적용에 따른 냉난방 및 조명 부하 저감에 관한 연구)

  • Yoon, Jong-Ho;An, Young-Sub;Park, Jang-Woo;Kim, Bit-Na
    • KIEAE Journal
    • /
    • v.13 no.3
    • /
    • pp.91-96
    • /
    • 2013
  • The purpose of this study was to analyze the annual energy demand including heating, cooling and lighting according to kind of windows with transparent thin-film a-Si Building Integrated Photovoltaic(a-Si BIPV) for office building. The analysis results of the annual energy demand indicated that the a-si BIPV window was reduced by 8.4% than the clear gazing window. The base model A was combinate with a-Si BIPV window area of 67% and clear window area of 33% among the total exterior area. The model B is to be applied with low-e clear glass instead of clear glass of the base model A. The model B was reduced to annual energy demand of 1% more than the model A. Therefore, By using a-si BIPV solar module, the cooling energy demand can be reduced by 53%(3.4MWh) and the heating energy demand can be increase by 58%(2.4MWh) than clear glazing window in office building. Also, Model C applied to the high efficient lighting device to the model B was reduced to annual energy demand of 14.4% more than the Model D applied to the high efficient lighting device to the model A. The Model E applied with daylight dimming control system to the Model C was reduced to annual energy demand of 5.9% more than Model C.

Analysis of Economic Feasibility and Reductions of Carbon Dioxide Emission of Geothermal Heating and Cooling System using Groundwater (지하수를 이용한 지열 냉난방시스템의 경제성 및 이산화탄소 저감량 분석)

  • Kim, Jin-Sung;Song, Sung-Ho;Jeong, Gyo-Cheol;Cha, Jang-Hwan
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.599-612
    • /
    • 2015
  • The development of renewable energy technologies that can replace fossil fuels is environmentally important; however, such technologies must be economically feasible. Economic analyses are important for assessing new projects such as geothermal heating-cooling systems, given their large initial costs. This study analyzed the economics and carbon dioxide emissions of: a SCW (standing column well), a vertical closed loop boiler, a gas boiler, and an oil boiler. Life cycle cost analysis showed that the SCW geothermal heating-cooling system had the highest economic feasibility, as it had the highest cost saving and also the lowest carbon dioxide emissions. Overall, it appears that geothermal systems can save money when applied to large-scale controlled agriculture complexes and reclaimed land.

Investigations and Analyses of Duck Breeding Facilities in Jeollanam-do Province, Korea (전남지역 오리 사육시설 실태 조사 및 분석)

  • Kwon, Kyeong-seok;Yang, Kayoung;Kim, Jong-bok;Kim, Jung-kon;Jang, Donghwa;Choi, Sungmin;Lee, Sang-yeon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • Number of duck and its breeding facilities have been steadily decreasing for financial and social issues in Korea. Therefore, the 'turning point' for duck industry is strongly demanded. In this study, the questionary survey was carried out to provide backgrounds for developing policy and technology for duck breeding farms. The questionary survey aimed to investigate the information of operation strategy of farm, ventilation, cooling and heating. The total number of survey respondents was 74. In case of facility type, 55.4% of respondents stated they used greenhouse type, 31.3% for winch-curtain type, and 2.7% for windowless type (mechanically ventilated facility). More than 85% of the facilities were using 'natural ventilation', it meant that these situation can restrict the not only environmental control but also the supply policy for 'smart farm' of the Government. 44.6% used the combination of the cross-ventilation method and roof-ventilation method for ventilation operation in summer season, and 31.1% followed only the cross-ventilation method. In case of winter season, 36.5% used the cross-ventilation method, and 33.3% used the combination of cross and roof-ventilation, method. For the ventilation strategy, about 86.5% depended on farmer's experience. In case of heating and cooling, 79.7% were using kerosene heater for winter season, and 43.2% were using mist-spray for summer season, respectively. More than 75% stated that cooling and heating strategies were based on farmer's experience. From the analyses of the survey results, a few proposals for developing policy and technology for duck breeding farm was suggested.

Basic Study on the IoT Micro Boiler (IoT 마이크로 보일러에 대한 기초 연구)

  • Jang, Sung-Cheol
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.1
    • /
    • pp.23-29
    • /
    • 2022
  • The product to be developed in this study is a heat recovery device which generates steam or hot water at high temperature and high pressure by heating water using exhaust gas from diesel engine, gas engine, gas turbine, etc. as an exhaust gas boiler off heat boiler(EGB) type for ship and power generation. The steam vapor or the created warm water is used as the power source required for the steerage heating and hot water facility or the HFO heating of the ship, and the turbine drive. The principle of waste heat boilers serves to heat water as high temperature exhaust gas with heat pass through the tube of the boiler. The heated water is a structure that is sent to a cabin or turbine device in the form of steam. In this study, the objective of this study is to maximize the efficiency by increasing the heat transfer surface by replacing the tube which is the heat transfer part of EGB with the plate tube.