• Title/Summary/Keyword: heating information

Search Result 516, Processing Time 0.028 seconds

New Solid-phase Crystallization of Amorphous Silicon by Selective Area Heating

  • Kim, Do-Kyung;Jeong, Woong-Hee;Bae, Jung-Hyeon;Kim, Hyun-Jae
    • Journal of Information Display
    • /
    • v.10 no.3
    • /
    • pp.117-120
    • /
    • 2009
  • A new crystallization method for amorphous silicon, called selective area heating (SAH), was proposed. The purpose of SAH is to improve the reliability of amorphous silicon films with extremely low thermal budgets to the glass substrate. The crystallization time shortened from that of the conventional solid-phase crystallization method. An isolated thin heater for SAH was fabricated on a quartz substrate with a Pt layer. To investigate the crystalline properties, Raman scattering spectra were used. The crystalline transverse optic phonon peak was at about 519 $cm^{-1}$, which shows that the films were crystallized. The effect of the crystallization time on the varying thickness of the $SiO_2$ films was investigated. The crystallization area in the 400nm-thick $SiO_2$ film was larger than those of the $SiO_2$ films with other thicknesses after SAH at 16 W for 2 min. The results show that a $SiO_2$ capping layer acts as storage layer for thermal energy. SAH is thus suggested as a new crystallization method for large-area electronic device applications.

Changes in Phytochemical Stability and Food Functionality during Cooking and Processing (식품의 조리.가공 공정 중 phytochemical 및 기능성의 변화)

  • Kim, Hyun-Jung;Chun, Hyang-Sook
    • Korean journal of food and cookery science
    • /
    • v.22 no.3 s.93
    • /
    • pp.402-417
    • /
    • 2006
  • Research interest on functional food and phytochemicals has mainly focused on their health effects, mechanism of action and structure-activity relationship for the development of nutraceuticals. Considering the intake of phytochemicals via the normal diet, further information is required on changes in food functionality or individual phytochemicals that occur during the cooking or processing of foods, in order to increase the intake of these bioactive compounds, because many of the unit-operating procedures involved in cooking or food processing may result in physicochemical changes of food constituents. This study reviews the changes of selected phytochemicals, i.e. flavonoids, organosulfur compounds and carotenoids, or food functionality by major cooking or processing procedures such as heating, fermentation, and pH changes. In general, heating has a negative effect on food functionality, although in some cases, mild heating increases bioactive phytochemical contents. Some phytochemicals, including anthocyanins and catechins, are stabilized in lower pH conditions. The structures of phytochemicals, including isoflavones and catechins, are changed by fermentation. The loss of bioactive compounds may be decreased by recently developed cooking or processing methods such as microwave cooking or use of high hydrostatic pressure. However, the effects of cooking and processing procedures on food functionality and phytochemicals are so diverse and dependent on test conditions that further research efforts are needed to form accurate conclusions on the effects of cooking and processing of foods.

Effect of the building envelope on heating and cooling load in super tall building considering the meteorological changes with height (높이별 기상변화를 고려한 초고층 건축물의 외피종류별 냉난방 부하특성 분석)

  • Choi, Jong-Kyu;Kim, Yang-Soo;Song, Doo-Sam
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.337-344
    • /
    • 2012
  • Today, the number of super tall buildings are under construction or being planed in Middle East and Asian Countries. For example the burj Khalifa, the tallest building in the world, is completed in 2008 and the height of that is about 800m. Also, Lotte World Tower is under construction in Korea. External environmental conditions such as wind speed, air temperature, humidity and solar radiation around the super tall building differs according to the building height due to the vertical micro climate change. However, the meteorological information used for AC design of building is obtained typically from standard surface meterological station data(~2m above the ground). In this paper the effect of the building envelope on heating and cooling load in super tall building considering the meteorological changes with height was analyzed with simulation method. As results of this research, the guideline to select the building envelop alternatives for super tall building will be suggested in this paper.

  • PDF

An Experimental Study of Ground Water Source Two Well Type Geothermal Heat Pump System (지하수 열원 복수정 지열 열펌프 시스템의 성능에 관한 실험적 연구)

  • Lim, Hyo-Jae;Kwon, Jeong-Tae;Kim, Chang-Eob;Kong, Hyoung-Jin;Park, Seong-Koo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.8
    • /
    • pp.468-474
    • /
    • 2009
  • Ground water source heat pump system is the oldest one of the ground source heat pump systems. Despite of this, little formal design information has been available until recently. The important design parameters for open system are the identification of optimum ground water flow, heat exchanger selection and well pump. In this study, the capacity of 50 RT system of two well type ground water heat pump system was used. As a result, static water level was -7 m and the level during the heating operation was -32 m, cooling operation was -40 m. The initial static water level recovered within 48 hrs. The temperature of ground water is $15.6^{\circ}C$ for heating season and $16.2^{\circ}C$ for cooling season and does not depend on the outdoor temperature. Operation efficiency of the system shows that, COP 3.1 for heating and COP 4.2 for cooling.

Role of Radio Frequency and Microwaves in Magnetic Fusion Plasma Research

  • Park, Hyeon K.
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.4
    • /
    • pp.169-177
    • /
    • 2017
  • The role of electromagnetic (EM) waves in magnetic fusion plasma-ranging from radio frequency (RF) to microwaves-has been extremely important, and understanding of EM wave propagation and related technology in this field has significantly advanced magnetic fusion plasma research. Auxiliary heating and current drive systems, aided by various forms of high-power RF and microwave sources, have contributed to achieving the required steady-state operation of plasmas with high temperatures (i.e., up to approximately 10 keV; 1 eV=10000 K) that are suitable for future fusion reactors. Here, various resonance values and cut-off characteristics of wave propagation in plasmas with a nonuniform magnetic field are used to optimize the efficiency of heating and current drive systems. In diagnostic applications, passive emissions and active sources in this frequency range are used to measure plasma parameters and dynamics; in particular, measurements of electron cyclotron emissions (ECEs) provide profile information regarding electron temperature. Recent developments in state-of-the-art 2D microwave imaging systems that measure fluctuations in electron temperature and density are largely based on ECE. The scattering process, phase delays, reflection/diffraction, and the polarization of actively launched EM waves provide us with the physics of magnetohydrodynamic instabilities and transport physics.

Design and Fabrication of Durable Micro Heater for Intelligent Mold System (금형온도 능동제어 시스템 적용을 위한 고 내구성 마이크로 히터의 설계 및 제작)

  • Noh Cheolyong;Kim Youngmin;Choi Yong;Kang Shinill
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.26-30
    • /
    • 2005
  • Stamper surface temperature is very critical in replicating the high density optical disc substrates using injection molding as the pit or land/groove patterns on the optical disc substrate have decreased due to the rapid increase of areal density. During the filling stage, the polymer melt in the vicinity of the stamper surfaces rapidly solidifies and the solidified layer generated during polymer filling greatly deteriorates transcribability and fluidity of polymer melt. To improve transcribability and fluidity of polymer melt, stamper surface temperature should be controlled such that the growth of the solidified layer is delayed during the filling stage. In this study, the effect of heating on replication process was simulated numerically. Then, an injection mold equipped with instant active heating system was designed and constructed to raise the stamper surface temperature over the glass transition temperature during filling stage of the injection molding. Also, the closed loop controller using the Kalman filter and the linear quadratic Gaussian regulator was designed. As a result, the stamper surface temperature was controlled according to the desired reference stamper surface temperature.

  • PDF

A Performance Estimation of Ground Source Heat Pump System Used both for Heating and Snow-melting (난방.융설 겸용 지열원 히트펌프시스템의 운전성능 평가)

  • Choi, Deok-In;Kim, Joong-Hun;Hwang, Kwang-Il
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.1
    • /
    • pp.7-12
    • /
    • 2012
  • This study proposes a hybrid geothermal system combined with heating mode and snow-melting mode for winter season in order to increase the annual operating efficiency of the GSHP(Ground Source Heat Pump). The purpose of this study is to get effectiveness of the hybrid geothermal system by the site experiments. In case of snow-melting only mode, the GSHP COP is 0.7 higher than system COP in average. And in case of hybrid mode, heating GSHP COP is 0.5 higher than snow-melting GSHP COP. And it is also found out that all COP obtained through measurement periods is higher than nominal COPs given by GSHP manufacturer. As a conclusion, it is clear that the proposed hybrid geothermal system is expected as a highly efficient system.

A Study on Magnetic Cure System Depending on Dominant Direction of Meridian using Heating Diagnosis Method

  • Kim, Byoung-Hwa;Lee, Hie-Soung;Lee, Woo-Cheol;Han, Gueon-Sang;Won, You-Seub;Sagong, Seok-Jin;Ahn, Hyun-Sik;Kim, Do-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1776-1779
    • /
    • 2002
  • In this paper, we measured the heating time on the key measuring point of the meridian of the human body's left and right by using heating machine. Then, based on the fuzzy theory, this study diagnosed the each meridian's strength and weakness, After that, both the strengthening and weakening stimulus of magnetic field was applied to the dominant direction to find out how the degree of strength and weakness of the meridian changed. Ultimately, the magnetic therapy that can stimulate the magnetic field at the time of diagnosis and thereby balancing the interactive of a five system has been materialized. For the stimulation of magnetic field, a stimulating device which can change the direction and time on a specific part of the key measuring points has been developed and used. The therapeutic method is as follows. first, the strength and weakness of the meridian has been determined. Second, both the extremely weak meridian of Yin(Shade) and Yang(Shine), and the extremely strong meridian of Yin and Yang were adjusted by applying appropriate ascending and descending stimuli respectively.

  • PDF

A Study on the Dieless Wire Drawing Using Microwave (마이크로웨이브를 이용한 Dieless Wire Drawing 에 대한 연구)

  • Huh You;Kim S.H.;Kim J.S.;Kim I.S.;Paik Y.N.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.942-945
    • /
    • 2005
  • Micron-sized metal wires are widely used in industries such as filtration, catalyst and composite materials, etc. In the wire drawing process, the die that is used conventionally is an effective and, at the same time, sensitive component. However, a typical array of the dies has caused many problems in the wire drawing process, e.g., large frictional force on the interface between wire and the resulting high heat generation, precise adjustment of the dies, extended cooling system, die abrasion, etc.. Because of these problems, there have been many works that are aiming at improving the efficiency of wire drawing process by analyzing the die geometry and by applying advanced die material to prolong the die life or even at developing a dieless wire drawing system. This paper is dealing with developing a new wire drawing system that is applicable to reduce the wire drawing steps with high draw ratio. The new wire drawing system does not use the dies, but use the self-induced heater that works on the basis of the resonant phenomenon of wire material. The electromagnetic wave is the heating source. The results of the study on the diameter reduction and microwave flow analysis show that the heating effectiveness of the wire is influenced by the energy distribution in the microwave propagation chamber. We can obtain diameter-reduced wires by using microwave in the dieless drawing process. Microwave as a heating source is capable of producing wires without applying dies in wire drawing process.

  • PDF

A Study on Heating of Hatching Eggs to Improve Hatchability : A Field Study (부화율 향상을 위한 종란의 가열방법에 관한 연구)

  • Kim, Tae-Sung;Lee, Hyun-Chang;Choi, In-Hag;Jang, Woo-Whan
    • Journal of Environmental Science International
    • /
    • v.23 no.7
    • /
    • pp.1367-1373
    • /
    • 2014
  • This study was conducted to evaluate the effects of heating hatching eggs on the number of day-old chicks, egg temperature and egg weight during extended storage, and to provide basic information for improving hatchability to livestock producers. Eggs (Hy-line) were subjected to the following treatments: "control": eggs were maintained in an incubator after storage for 8 days; "T1": eggs were preheated for 8 hours at $23.9^{\circ}C$ after storage for 8 days in a hatchery; "T2": eggs were initially heated for 8 hours at $37.8^{\circ}C$ in an incubator and then preheated for 8 hours at $23.9^{\circ}C$ in a hatchery after storage for 8 days. The results were as follows: First, at the end of the experiment, the total number of day-old chicks was higher in T1, followed by T2 and then the control. This indicated that chick hatchability may be improved when eggs are preheated. Second, compared with the control, the number of day-old female chicks was expected to be higher in treatments with pre-heating; however, the results indicated the opposite effect. Third, as storage time lengthened, the factor that influenced preheating (the main effect and interactions) was not egg weight but egg temperature measured in the upper, middle and bottom parts of incubator. The temperatures recorded in all treatments ranged from 37.97 to $38.40^{\circ}C$ in the upper parts of incubator, 37.80 to $38.26^{\circ}C$ in the middle parts of incubator, and 37.94 to $38.59^{\circ}C$ in the bottom parts of incubator over storage. In conclusion, preheating was very effective in improving hatchability, and egg temperature was the main factor affecting preheating and hatchability.