• 제목/요약/키워드: heating experiment

검색결과 868건 처리시간 0.03초

열선을 이용한 해양플랜트 헬리데크의 방한설계에 관한 연구 (A Study of Winterization Design for Helideck Using the Heating Cable on Ships and Offshore Platforms)

  • 배소영;강규홍
    • 대한조선학회논문집
    • /
    • 제54권1호
    • /
    • pp.43-48
    • /
    • 2017
  • In recent years, the demand for ships and offshore platforms that can navigate and operate through the Arctic Ocean has been rapidly increasing due to global warming and large reservoirs of oil and natural gas in the area. Winterization design is one of the key issues to consider in the robust structural safety design and building of ships that operate in the Arctic and Sub-Arctic regions. However, international regulations for winterization design in Arctic condition regulated that only those ships and offshore platforms with a Polar Class designation and/or an alternative standard. In order to cope with the rising demand for operating in the Arctic region, existing and new Arctic vessels with a Polar Class designation are lacking to cover for adequate winterization design with HSE philosophy. Existing ships and offshore platform was not designed based on reliable data based on numerical and experiment studies. There are only designed as a performance and functional purposes. It is very important to obtain of reliable data and provide of design guidance of the anti-icing structures by taking the effects of low temperature into consideration. Therefore, the main objective of this paper reconsiders anti-icing design of aluminum helideck using the heating cable. To evaluate of reliable data and recommend of anti-icing design method, various types of analysis and methods can be applied in general. In the present study, finite element method carried out the thermal analysis with cold chamber testing for performance and capacity of heating cables.

부화율 향상을 위한 종란의 가열방법에 관한 연구 (A Study on Heating of Hatching Eggs to Improve Hatchability : A Field Study)

  • 김태성;이현창;최인학;장우환
    • 한국환경과학회지
    • /
    • 제23권7호
    • /
    • pp.1367-1373
    • /
    • 2014
  • This study was conducted to evaluate the effects of heating hatching eggs on the number of day-old chicks, egg temperature and egg weight during extended storage, and to provide basic information for improving hatchability to livestock producers. Eggs (Hy-line) were subjected to the following treatments: "control": eggs were maintained in an incubator after storage for 8 days; "T1": eggs were preheated for 8 hours at $23.9^{\circ}C$ after storage for 8 days in a hatchery; "T2": eggs were initially heated for 8 hours at $37.8^{\circ}C$ in an incubator and then preheated for 8 hours at $23.9^{\circ}C$ in a hatchery after storage for 8 days. The results were as follows: First, at the end of the experiment, the total number of day-old chicks was higher in T1, followed by T2 and then the control. This indicated that chick hatchability may be improved when eggs are preheated. Second, compared with the control, the number of day-old female chicks was expected to be higher in treatments with pre-heating; however, the results indicated the opposite effect. Third, as storage time lengthened, the factor that influenced preheating (the main effect and interactions) was not egg weight but egg temperature measured in the upper, middle and bottom parts of incubator. The temperatures recorded in all treatments ranged from 37.97 to $38.40^{\circ}C$ in the upper parts of incubator, 37.80 to $38.26^{\circ}C$ in the middle parts of incubator, and 37.94 to $38.59^{\circ}C$ in the bottom parts of incubator over storage. In conclusion, preheating was very effective in improving hatchability, and egg temperature was the main factor affecting preheating and hatchability.

온실 난방을 위한 모세관형 태양열 집열기의 성능에 미치는 유량의 효과에 관한 연구 (The Effects of Water Flow Rates on the Performance of a Capillary Tube Solar Collector for Greenhouse Heating)

  • 유영선;장유섭;홍성기;윤진하;정두호;강영덕
    • 생물환경조절학회지
    • /
    • 제5권1호
    • /
    • pp.57-64
    • /
    • 1996
  • To use effectively the solar energy in greenhouse heating, a high performance solar collector should be developed. And then the size of the solar collector and thermal storage tank should be determined through the calculation of heating load. The solar collector must be set in the optimum tilt angle and direction to take daily solar radiation maximally, and the flow rate of heat transfer fluid through the solar collector should be kept in the optimum range. In this research, the performance tests of a capillary tube solar collector were performed to determine the optimum water flow rate and the results summarized as follows. 1. The regressive equations for efficiency estimations of the capillary tube solar collector in the open loop were modeled in the water flow rate of 700-l,000 $\ell$/hr. 2. The optimum water flow rate of the solar collector was estimated by the second order polynomial regression and the maximum efficiency was 80% at the water flow rate of 850 $\ell$/hr. 3. The solar thermal storage system consisted of a capillary tube solar collector and a water storage tank was tested at the water flow rate of 850 $\ell$/hr in the closed loop, and obtained the solar thermal storage efficiency of 55.2%. 4. As the capillary tube solar collector engaged in this experiment was made of non-corrosive polyolefin tubes, its weight was as light as 1/30 of the flat plate solar collector made of copper tubes. Therefore it was considered to be suitable for the greenhouse heating system.

  • PDF

선외기 샤프트용 재료의 마찰용접에 관한 연구 (Study on Friction Welding of SUS431 and SCM21 for External Shaft of Ship)

  • 오세규;이종환;배명주;오명석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제17권4호
    • /
    • pp.38-48
    • /
    • 1993
  • A study on friction welding of stainless steel bar(SUS431) to chrome molybdenum steel bar(SCM21) was accomplished experimentally through analysis for relations among friction welding conditions, tension test, hardness test, microstructure test and acoustic emission test. The results obtained are summarized as follows ; 1. Through friction welding of SUS431 bar to SCM21 bar, the optimum welding condition by considering on strength and toughness was found to be the range of heating time of 3-5 sec when the number of rotating speed of 2000rpm, heating pressure of 10kg/$mm^2$, and upsetting time of 4 sec. 2. Quantitative ralationship was identified between heating time($T_1$, sec) and tensile strength (${\sigma},\;kgf/mm^2$) of the friction welded joint and the relation equation is $\sigma$=52.62$T_1{^{0.06}}$. 3. Through AE test, quantitative relationship was confirmed between heating time($T_1$, sec) and total AE(N, counts) during welding, and the relation is computed as follows ; N=30413.6$e^{0.06T1}$. 4. It was confirmed that the quantitative ralationship exists between the tensile strength of the welded joints and AE cumulative counts. And the relation is computed as the following ; ${\sigma}$=16.37(ln N)- 116.4. 5. When ONZ=36500-41500 counts by $OT_1Z$=3~5sec, it was identified by experiment that the range of welded joint tensile strength is 55.6-57.7kgf/$mm^2$/ whose joint efficiency is more than 100%, and it was experimentally confirmed that the real-time nondestructive quality(strength) evaluation for the friction welded joints could be possible by acoustic emission technique.

  • PDF

굴삭기용 호스 니플의 마찰용접과 음향방출기법의 적용 (Application of Acoustic Emission Technique and Friction Welding for Excavator Hose Nipple)

  • 공유식;이진경
    • 비파괴검사학회지
    • /
    • 제33권5호
    • /
    • pp.436-442
    • /
    • 2013
  • 마찰용접은 축 대칭 단면금속을 용접하는 매우 유용한 결합 과정이다. 본 논문에서는 굴삭기용 호스 니플의 관대관 마찰용접을 시행하여 수송산업 등에 적용 가능성을 제안하고 마찰용접 변수의 기계적 특성을 분석하여 최적화 조건을 결정하고자 하였다. 회전속도, 마찰가열압력 및 가열시간 등 주요 변수를 선정하고 각 매개변수의 세 가지 수준에서 실험을 수행하였다. 한편, 최적의 마찰용접조건을 비파괴적으로 도출하기 위하여 음향방출기법이 적용되었으며 카운터, 이벤트 및 파형과 주파수 스팩트럼 등의 AE 파라미터들을 이용하여 마찰용접시 발생하는 신호를 분석하고자 하였다. 인장시험 결과 최적의 용접 변수는 회전속도 1300 rpm, 마찰가열압력 15 MPa, 마찰가열시간 10초로 나타났으며, 이벤트는 마찰용접된 시험편의 인장강도를 추정하는데 유용한 파라미터가 되었다.

Facade 일체형 태양열 집열기를 갖는 태양열/지열 하이브리드 시스템의 태양열 집열시스템 작동특성 연구 (A Study on the Operating Characteristics of Solar Collecting System in Solar Thermal/Geothermal Hybrid System with Facade Integrated Solar Collector)

  • 백남춘;이진국;유창균;윤응상;윤종호
    • 한국태양에너지학회 논문집
    • /
    • 제30권5호
    • /
    • pp.69-76
    • /
    • 2010
  • In this study, the solar thermal and geo-source heat pump(GSHP) hybrid system for heating and cooling of Zero Energy Solar House(ZESH) was analyzed by experiment. The GSHP in this hybrid system works like as aback-up device for solar thermal system. This hybrid system was designed and installed for Zero Energy Solar House (KIER ZeSH) in Korea Institute of Energy Research. The purpose of this study is to find out that this system is optimized and operated normally for the heating load of ZeSH. The analysis was conducted as followings ; - the thermal performance of facade integrated solar collector - the on/off characteristics of solar system and GSHP - the contribution of solar thermal system. - the performance of solar thermal and ground source heat pump system respectively. - the meet of thermal load (space and water heating load). This experimental study could be useful for the optimization of this system as well as its application in house. This hybrid system could be commercialized for the green home if it is developed to a package type.

온실 내 토양소독을 위한 지중난방시스템의 지중 열전달 특성 (Underground Heat Transfer Characteristics of the Underground Heating System for Soil Sterilization in Greenhouse)

  • 박경규;하유신;홍동혁;장승호;김진현
    • Journal of Biosystems Engineering
    • /
    • 제35권2호
    • /
    • pp.108-115
    • /
    • 2010
  • This study was conducted to estimate the optimum temperature and required time for soil sterilization when heated water was circulated through underground heating pipes in the greenhouse which solar heat was influenced to the temperature of soil during the summer day. Two different types of heating pipes were used for the experiment. One was a polyethylene pipe(XL) and the other was a corrugated ring shaped stainless steel pipe(STS). The results of the studies were summarized as follows; By measuring the thermal characteristics of the XL and STS, it was examined that the average temperature differences of the inlet and outlet were $8.5^{\circ}C$ and $13.3^{\circ}C$, the average flowrates were 15.3 L/min and 5.6 L/min, and the average radiation powers were 9.1 kW and 4.1 kW, respectively. As results of the regression analysis of underground temperatures, when average soil temperature was$35^{\circ}C$, an average water temperature was $80^{\circ}C$, and XL was used, it was estimated that the possible heat transfer distance, the required time for heat transfer and heat flux to reach the underground temperature of $60^{\circ}C$ were 300 mm, 230 hours, and $7.57kW/m^2$, respectively.

고온, 한냉 및 산도가 토끼 적혈구막 투과성에 미치는 영향 (Influence of Heating, Cooling and Acidity on the Permeability of the Rabbit Erythrocyte Membrane)

  • 이덕숙;신효숙;황애련;최덕경
    • The Korean Journal of Physiology
    • /
    • 제1권2호
    • /
    • pp.151-156
    • /
    • 1967
  • Outward movement of hemoglobin and $K^+$ ion across rabbit erythrocyte membrane after heating, cooling and in acid medium was studied. One milliliter of rabbit blood was centrifuged and packed red cells were obtained. Packed red cells were resuspended by addition of 4 ml of 0.9% NaCl solution and were subjected to heating $(57^{\circ}C\;for\;5\;minutes)$ or cooling $(-4^{\circ}C{\sim}-8^{\circ}C\;of\;-10^{\circ}C{\sim}-11^{\circ}C\;for\;10\;minutes) $. For acid medium experiment packed ref cells were resuspended by addition of 4 ml of acid medium of PH 4.5 consisting of 0.01% glacial acetic acid in 0.85% NaCl solution and kept standing for 10 minutes. All red cell suspensions were centrifuged again and packed red cells were separated. This packed red cells were again suspended in 4 ml of NaCl solution of 0.8%, 0.7%, 0.6%, and 0.5% concentration respectively and kept standing for 20 minutes. The concentration of hemoglobin and $K^+$ in the supernatant of the above red cell suspensions were measured and the following results were obtained. 1. Outward movement of hemoglobin and $K^+$ was greatest in red cells subjected to heating. The movement paralled to the osmolal concentration gradient between extra- and intra-cellular phase of red cells. 2. In acid medium the outflux of hemoglobin and $K^+$ increased as compared to the control. 3. In red cells subjected to the cold of $-10^{\circ}C{\sim}-11^{\circ}C$ the outflux of hemoglobin and $K^+$ increased. Whereas in the environment of $-4^{\circ}C{\sim}-8^{\circ}C$ there was no change in the outflux of $K^+$. The he-moglobin outflux showed rather a decreased as compared to tile control.

  • PDF

온수 가열 바닥 난방 시스템용 고성능 버블젯 루프 히트파이프 개발 (Development of High Performance Bubble Jet Loop Heat Pipe for Hot Water Floor Heating System)

  • 김종수;권용하;김정웅
    • 동력기계공학회지
    • /
    • 제18권4호
    • /
    • pp.23-28
    • /
    • 2014
  • In order to increase the performance of conventional hot water floor heating system, the bubble jet loop heat pipe for the system was developed. This experiment was conducted under next conditions : Working fluid was R-134a, charging ratio was 50%. A temperature of hot water, room temperature and flow rate were $60^{\circ}C$, $15^{\circ}C$ and 0.5~1.5 kg/min, respectively. The experimental results, show that bubble jet loop heat pipe had a high effective thermal conductivity of $4714kW/m^{\circ}C$ and a sufficient heat flux of $73W/m^2$ to heat the floor to $35^{\circ}C$ in case of the 1.5 kg/min of flow rate. So the bubble jet loop heat pipe has a possibility for appling of the floor heating system. Additionally, the visualization of bubble jet loop heat pipe was performed to understand the operating principle. Bubbles made by the narrow gap between inner tube and outer tube of evaporating part generate pulsation at liquid surface of working fluid. The pulsation had slug flow and wavy flow. So working fluid circulates in the bubble jet loop heat pipe as two phase flow pattern. And large amount of heat is transferred by the latent heat from evaporating part to condensing part.

복합형 태양열 가열기 열매체 동시운전시의 열적 성능에 관한 실험적 연구 (Experimental Study for Thermal Performance of Hybrid Air-Water Heater Using Solar Energy during Heating Medium Working Simultaneously)

  • 최광환;윤정인;손창효;최휘웅;김부안
    • 한국태양에너지학회 논문집
    • /
    • 제34권3호
    • /
    • pp.115-121
    • /
    • 2014
  • With increment on interesting about improving renewable energy efficiency, many research have been conducted and the research about hybrid air-water heater using solar energy that can make heating air and hot water has been conducted also. In this experiment, the temperature difference and thermal efficiency were investigated when two heating medium(air and liquid) was working simultaneously. As a result, thermal efficiency showed 44% to 88% when these heating medium was working simultaneously depending on operation condition and it is better than traditional solar collector. Also possibility of application into building equipment also was confirmed based on temperature and thermal efficiency. But necessity of additional studies about proper operation condition according to purpose of use and heat load was confirmed because change of thermal efficiency by air velocity and flux of liquid was shown a huge difference.