• Title/Summary/Keyword: heating energy consumption

Search Result 611, Processing Time 0.033 seconds

An Analysis of Demand for Environmental Controls on Different Residential Building Types (주거용 건물의 유형에 따른 환경조절요구에 대한 분석)

  • Leigh Seung-Bok;Won Jong-Seo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.10
    • /
    • pp.960-968
    • /
    • 2004
  • One of the most important functions of a building is to provide thermally comfortable indoor environmental conditions for the occupants. Therefore, a great deal of energy is consumed for heating and cooling to satisfy those thermal requirements. In order to provide thermal comfort with minimum heating and cooling energy consumption, optimal design of building affecting indoor climate is required. This study used the TRNSYS for modeling and simulation of the energy flows of residential building types, and examined the energy efficient measures to reduce the thermal loads. The residential building types are classified into the detached house, apartment house and high-rise residential complex. The results of the simulation show that the heating energy consumption in the detached house is especially high, whereas the cooling load is an important determinant in the apartment house and high-rise residential complex. The measures examined are the insulation thickness, various types of glazing, infiltration, natural and controlled ventilation, solar shading, orientation and etc. Comparative evaluations and sensitivity analyses revealed the effects of these variables and identified their energy efficient building design strategies.

Growth Characteristics of Cherry Tomato in Greenhouse using Far Infrared Heating Systems (원적외선 난방시스템이 방울토마토 생육에 미치는 영향)

  • Kim, H.J.;Li, H.;Kang, T.H.;Ning, X.F.;Han, C.S.;Cho, S.C.
    • Journal of Biosystems Engineering
    • /
    • v.34 no.3
    • /
    • pp.161-166
    • /
    • 2009
  • This study was conducted to investigate the growth characteristics of cherry tomatoes in greenhouse using far infrared heating system. The far infrared greenhouse heating systems were installed in two ways on the greenhouse side wall and at the greenhouse ceiling. The heating characteristics of far infrared heating system were analyzed by investigating the heating load, internal temperature, energy consumption, growth characteristics and quality evaluation. The results were compared with heated air heating system using kerosene. The results showed that tomatoes grown in the greenhouse with the far infrared heating system had relatively better plant height, leaf length, leaf width, stem diameter than ones from the greenhouse with hot air heating system and both heating methods had no significant difference on Cherry tomato sugar contents. At the same time, the far infrared heating system reduced heating cost from 34.5 to 41.4% on comparing with hot air heating system.

The Effects of Prediction and Reset Control of Outdoor Air Temperature on Energy Consumption for Central Heating System (외기온도 예측 및 보상제어가 난방시스템의 에너지 소비량에 미치는 영향)

  • Ahn, Byung-Cheon;Hong, Sung-Suk
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.4
    • /
    • pp.8-14
    • /
    • 2016
  • In this study, the effects of prediction and reset control of outdoor air temperature on energy consumption for central heating system are researched by using TRNSYS program package, and the control performances with the suggested methods of prediction and reset control of outdoor air temperature are compared with the existing ones. As a result, the value of coefficient of determination $R^2$ for the predicted outdoor temperatures is improved and the suggested control method shows maximum 21.8% energy saving in comparison with existing control ones.

Experimental Study on the Indoor Thermal Characteristics for Floor Radiant Heating System (바닥복사 난방시스템의 실내 열환경 특성에 대한 실험적 연구)

  • Song, Jae-Yeob;Ahn, Byung-Cheon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.3
    • /
    • pp.1-12
    • /
    • 2021
  • In this study, the effects of various operational conditions for floor radiant heating system were researched by experiments. Hot water supply set temperature, indoor air set temperature and supply water flowrate were considered as operational conditions. The control method for this system is On-Off control of automatic thermostatic valve. The purpose of this study is to evaluate indoor thermal control characteristics and energy performance, respectively. As a result, if lower supply water temperature is applied, the supply and return temperature difference is reduced and energy consumption of heat supply is also reduced.

The Effects of Hot Water Supply Temperature on Indoor Thermal Characteristics for Floor Radiant Heating System (바닥복사 난방시스템의 공급온수온도가 실내 열환경에 미치는 영향)

  • Ahn, Byung-Cheon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.4
    • /
    • pp.13-19
    • /
    • 2018
  • The Effects of hot water supply temperature on indoor thermal characteristics for floor radiant heating system in residential apartment were researched by computer simulation. The parametric study on hot water supply temperatures with different outdoor air temperatures was done with regard to energy performance and control characteristics, respectively. As a result, the maximum overshoot of indoor air temperature and energy consumption were reduced by adjusting the hot water supply temperatures with outdoor air temperatures.

A Study on the Greenhouse Heating of Solar Energy - Latent Heat Storage System - (태양열-잠열축열시스템의 온실보온특성)

  • 송현갑;류영선
    • Journal of Bio-Environment Control
    • /
    • v.1 no.1
    • /
    • pp.14-20
    • /
    • 1992
  • For the high quality and low cost agricultural crops in greenhouse cultivation, it is necessary to use natural energy as much as possible. In order to reduce the fossil fuel consumption and maximize the solar energy utilization in greenhouse heating, a latent heat storage material was developed as a relatively highly concentrative solar energy storage medium. And a solar energy-latent heat storage system was designed and constructed. The experimental research on greenhouse heating effect of the system was performed.

  • PDF

The Improvement of Building Envelope Performance in Existing School Building (기존 학교 건물의 외피 성능 개선 방안에 관한 연구)

  • Bang, Ah-Young;Park, Se-Hyeon;Kim, Jin-Hee;Kim, Young-Jae;Kim, Jun-Tae
    • KIEAE Journal
    • /
    • v.15 no.4
    • /
    • pp.69-76
    • /
    • 2015
  • Purpose: This study is to investigate the effects of facade insulation and window remodeling of an existing old middle school building on the reduction of energy consumption. Method: To analyze energy performance of building, using DesignBuilder v3.4, building energy simulation tool based EnergyPlus engine. Energy consumption and problem of target building was analyzed based on data and survey. Based on building energy simulations it analyzed the variation of energy demand for the building according to U-value of wall, glazing properties and external shading devices. Result: When insulation of building was reinforced, cooling and heating load was decreased. Glazing properties that minimize cooling and heating energy consumption were analyzed. In conclusion, it is important to choose SHGC and U-value of window fit in characteristic of target building. Setting external blind for cooling load decreases 5%.

A Fundamental Study On the Self-Sufficient Heating Energy for Residential Building (주거용 건물의 난방 에너지 자립을 위한 기초 연구)

  • Son, Sun-Woo;Baek, Nam-Choon;Suh, Seung-Jik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.255-258
    • /
    • 2009
  • Leading developed countries have studied energy self-sufficient houses such as zero or low energy buildings to reduce energy consumption for buildings since the early 1990s. Moreover, some developed countries have actually constructed self-sufficient houses and operated them for demonstration, expanding use of such houses. Korea has also established Zero Energy Solar House(ZeSH) and studied energy independence. Therefore, this study analyzed research result regarding ZeSH, self-sufficient energy house hold of Korea, found out technologies used for heating energy independence, used building interpretation program(ESP_r) to evaluate performance of each factors and analyzed energy reduction quantitatively. Results from the research are as follows: Reduction rate of actual detached house's heating load was also analyzed quantitatively depending on application of each technology. When each factor was applied step-by-step, annual reduction rate of heating load depending on increase in insulation thickness reached 6.6~22.2 %. Annual reduction rate of heating load depending on increase insulation thickness, and change in window heating performance and area ratio reached 31.5 %. Annual reduction rate of heating load through high-sealing and high-insulation depending on change in leakage rate reached 40.0~88.9 %. Annual reduction of heating load, when Mass Wall and attached sun space was applied were applied reached 28.5~39.2 %, respectively.

  • PDF

Interaction Analysis between Cooling-to-Heating Load Ratio and Primary Energy Consumption of HVAC&R System for Building Energy Conservation (건물의 냉, 난방 부하비율과 HVAC&R 시스템 1차 에너지 소비량의 상관관계분석 및 합리적 설계방안 연구)

  • Cho, Jinkyun;Kim, Jinho;Lee, Suengjae;Kang, Hosuk
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.3
    • /
    • pp.113-122
    • /
    • 2015
  • HVAC&R systems account for more than 50% of the energy consumption of buildings. The purpose of this study is to propose an optimal design method for the HVAC&R system and to examine the possibility for the energy conservation of a selected system. The energy demand for cooling and heating is determined by using TRNSYS and HEET. By an interaction between total system efficiency and cooling-to-heating load ratio, the optimal HVAC&R systems will be decided. The results showed that this proposed method is significantly capable of determining optimal system and building design for saving energy.

Synthesis of NaY Zeolites by Microwave and Conventional Heating (마이크로파 및 기존 가열 방법에 의한 제올라이트 NaY의 합성)

  • Choi, Ko-Yeol;Conner, W. Curtis
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.344-349
    • /
    • 2007
  • NaY zeolites synthesized by microwave heating were compared with those obtained by conventional heating. When the same temperature increasing rates were adopted in both heating methods, the microwave heating shortened the induction period and enhanced the rate of crystallization of NaY zeolites compared with the conventional heating. Irrespective of microwave radiation, the fast temperature increasing rate also shortened the induction time and enhanced the crystallization of NaY zeolites. The crystal sizes of NaY zeolites were large under the fast temperature raise of the reaction mixture and became larger by microwave radiation. At the same time, the fast temperature increasing rate has reduced the energy consumption due to the fast completion of reaction during the synthesis of NaY zeolite. The energy consumption in the conventional ethylene glycol bath was lower than that in the microwave oven with the same temperature increasing rate in this study, which means that the energy efficiency is not always high in microwave heating. If the temperature increasing rate is carefully controlled, however, NaY zeolite can be produced with high energy efficiency in the microwave oven.