• Title/Summary/Keyword: heating energy consumption

Search Result 611, Processing Time 0.028 seconds

Influence on the Thermal Environment by Change of Indoor-air Volume of Plastic Greenhouse with Hot Air Heating Systems (온풍난방을 채용한 3연동 플라스틱 하우스의 실내공기용적 변화가 하우스 온열환경에 미치는 영향)

  • Jeon, Sam-Chae;Li, Chang-Su;Na, Su-Yeun;Huh, Jong-Chul;Choi, Dong-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.3
    • /
    • pp.1-10
    • /
    • 2002
  • Relatively being economical in installation and easy in operation, hot-air heating system has been generally used in greenhouse for heating system regardless of high cost in maintenance and uneven distribution of air temperature. Therefore to overcome the disadvantages in maintenance and in distribution of air temperature and to improve efficiency of heating system, this experimental study is performed. This experimental study aims to improve the character of uneven temperature distribution in vertical direction and to reduce energy consumption for heating in a greenhouse. The experiment had been performed to investigate change of thermal environment and effects on reducing energy consumption for heating in greenhouse by additional surface insulation and reduction of indoor-air volume that come by installing transparent vinyl membranes with different height in each house. The results show that there is a wide difference in oil-energy consumption between houses according to condition of surface insulation and change of indoor-air volume. Furthermore, the results show that the efficiency of dual surface is higher than that of change of indoor-air volume in terms of energy saving.

Energy Consumption status of Apartment Buildings and Influence of Various Factors on Energy Consumption (공동주택의 에너지사용량 실태 분석 및 각종 인자가 에너지사용량에 미치는 영향 분석)

  • Kim, Yong-In;Song, Seung-Yeong
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.93-102
    • /
    • 2014
  • The aim of this study is to analyze the influence of various factors on energy consumption of apartment buildings. Energy consumption data of the Green Together, integrated building energy management system maintained by the government were used, and end-use and primary energy consumption data of 2012 were analyzed for 181 apartment complexes completed between 2004 and 2011 in Seoul. Energy consumption by use, source and heating type were analyzed. Then, energy consumption trends were analyzed and suggested according to energy efficiency ratings, number of households, areas for exclusive use, number of floors, core types, building types, orientations and completion years.

An Experimental Study on the Drying Characteristics of Automotive Paint Using Heating Panels and Hot Air (가열패널과 열풍을 이용한 자동차용 도료의 건조특성에 관한 실험적 연구)

  • Kim, Sung-Il;Park, Ki-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.12
    • /
    • pp.828-836
    • /
    • 2010
  • The drying is a process that involves coupled and simultaneous heat and mass transfer. When a wet solid is subjected to thermal drying, two processes occur simultaneously. Drying is classified according to heat transfer characteristics in terms of conduction, convection and radiation. In thermal drying, radiation is easier to control than conduction and convection drying and involves a relatively simple structure. In this study, we measured energy consumption, surface hardness of paint and surface gloss with variation of surface temperature of drying materials and drying time. Drying characteristics and energy consumption between heating panels and hot air heating have been presented. The present study shows that a dryer using heating panels is more effective than a hot air dryer from the viewpoint of energy conservation. The hot air dryer, however, was not optimized and more studies on various parameters related to drying will need to be investigated for definite comparison of drying characteristics of the dryers. The result, even if limited, would present the effective availability of paint drying.

Energy Consumption Characteristics and Evaluation of Thermal Insulation Performance in Accordance with Built Year of Apartment Complex (공동주택의 준공연도에 따른 단열성능 평가 및 에너지소비 특성에 관한 연구)

  • Choi, Doo Sung;Lee, Myung Eun;Chun, Hung Chan
    • KIEAE Journal
    • /
    • v.14 no.3
    • /
    • pp.79-86
    • /
    • 2014
  • Studies have shown that the thermal performance of buildings changes depending on the year of construction completion. It leads to increased energy consumption of buildings and significant financial burden on users. Thus, this study has calculated the thermal insulation performance of 86 apartments quantitatively, using temperature difference ratio and sensible heat flux. Also, energy consumption characteristics depending on the year of construction completion and thermal insulation performance were analyzed by comparatively analyzing the results of insulation performance evaluation and heating costs. The analysis results are as follows. As for thermal insulation performance, it was around 70% lower in the apartments completed before 1985, compared to apartments completed after 2010. As for heating costs, the apartments with the highest heating cost incurred 1.5 higher heating cost than the apartment with the lowest heating cost. In terms of the insulation performance evaluation, the difference was 2.5-fold.

Performance Evaluation of Light-Shelf based on Light Enviorment and Air Conditioner Enviorment (빛환경 및 냉난방환경 기반 광선반 성능평가 연구)

  • Jeon, Gangmin;Lee, Heangwoo;Seo, Janghoo;Kim, Yongseong
    • KIEAE Journal
    • /
    • v.16 no.5
    • /
    • pp.47-55
    • /
    • 2016
  • Purpose: As the energy consumed by buildings increases, there is a growing need for studies and technology development to address this issue. One of the solutions to excessive energy use by buildings is the light-shelf, which is a natural lighting system enabling efficient reduction in light energy, and research in this area has been intensive. However, most of the studies about the light-shelf are limited to the light environment, and thus the application of their findings to an actual environment in the form of a design may be problematic. Therefore, the purpose of the present study is to provide fundamental data for light-shelf design by carrying out a light-shelf performance evaluation on the basis of the light environment and the heating and cooling environment. Method: In the present study, a testbed was established to conduct a light-shelf performance evaluation by measuring the electric power consumption of lighting and heating and cooling devices depending on the existence of a light-shelf and its angle. Result: The findings of the present study are as follows: 1) With respect to the uniformity of the indoor light environment amenity, the optimum angle of a light-shelf was found to be $30^{\circ}$ for the summer solstice and the winter solstice. 2) With respect to the reduction of electric power consumption by indoor lighting devices, the optimum light-shelf angle at the summer solstice is $30^{\circ}$, at which time electric power consumption may be reduced by 10.2% in comparison with when no light-shelf is applied. However, at the winter solstice, a light-shelf may increase the energy consumption for lighting in comparison with when no light-shelf is applied, and this should be taken into account in the design of a light-shelf. 3) In terms of reducing the electric power consumption of heating and cooling devices, the optimum angle of a light-shelf was found to be $30^{\circ}$ for the summer solstice, while a light-shelf is inappropriate for the winter solstice since a light-shelf creates shade and thus increases the heating energy consumption. 4) To summarize the findings above, the optimum angle of a light-shelf is $30^{\circ}$ for the summer solstice, but the installation of a light-shelf may in some circumstances increase the energy consumed by lighting devices as well as by heating and cooling devices. Therefore, more studies and technology development may need to be performed to solve the problem of increased energy consumption at the winter solstice.

Analysis on the Impact of Load Factors in Building Energy Simulation Affecting Building Energy Consumption (에너지시뮬레이션에서의 부하요소가 건물에너지사용량에 미치는 영향 분석)

  • Yoon, Kap-Chun;Jeon, Jong-Ug;Kim, Kang-Soo
    • KIEAE Journal
    • /
    • v.11 no.4
    • /
    • pp.71-78
    • /
    • 2011
  • The goal of this study is to analyze the impact of load factors on building energy consumption by using EnergyPlus program. We selected a campus building and monitored energy consumption from January 2009 to November 2010. First, we simulated energy consumption basically with weather data, building heat gain and EHP performance data. And then we simulated energy consumption with three additional parameter(infiltration, OA control and schedule). Simulation results are verified by MBE and Cv(RMSE) proposed by M&V guideline 3.0. Simulated total energy consumption was 104.3% of measurements, 4.33% of MBE, and 13.62% of Cv(RMSE). Results show infiltration and schedule were revealed as the most dominant factor of heating energy consumption and of cooling energy consumption, respectively.

A Study on the Operational Strategy for Hybrid Ventilation System in Apartment unit focused on Indoor Air Quality (실내공기질을 고려한 공동주택의 하이브리드 환기 시스템의 운영에 관한 연구)

  • Lee, Yong-Jun;Leigh, Seung-Bok;Lee, Kyung-Hoi
    • KIEAE Journal
    • /
    • v.4 no.3
    • /
    • pp.203-210
    • /
    • 2004
  • This dissertation identifies and investigates the possible control modes of hybrid ventilation system in applying to general apartments. It evaluates range of hybrid ventilation control modes in terms of indoor air quality, thermal comfort, and energy consumption in a living room and a kitchen of the $1000m^2$ apartment. The TRNSYS simulation program was used for evaluating the following four ventilation types : A ventilation mode relying on only infiltration for supplying air, A natural ventilation mode considering with weather condition, A hybrid ventilation (natural + mechanical ventilation) mode allowing minimum ventilation with no heat exchange, and a hybrid ventilation mode with heat exchange. This study shows the following results. As temperature being controlled by heating cooling equipments, there is without significant difference in thermal performance among ventilation types. Regarding Indoor Air quality, Indoor air contamination level of the hybrid ventilation case consistently keep the lower levels. The hybrid ventilation modes consume more energy by a 49% as compared to the A ventilation mode relying on only infiltration for supplying air. It is caused by the continuous ventilation for keeping good indoor air quality; the increase of energy consumption can be attributable to the increase of the heating energy. Therefore, the heat exchange between indoor and outdoor air is required during heating season in severe weather conditions. During the cooling seasons, Introducing natural ventilation can achieve energy saving by 40 ~ 45%. Thus, it can be an effective strategies for energy saving. Based on these results, a hybrid ventilation system can be suggested as an effective ventilation strategy for archiving high level of indoor air quality, thermal comfort, and energy consumption.

Monthly Heating Energy Needs Analysis According to ISO 13790 and ISO 52016 (ISO 13790과 ISO 52016에 의한 월별 난방에너지 소요량 분석)

  • Zo, Chung-Hoon;Yun, Geun-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.5
    • /
    • pp.11-28
    • /
    • 2019
  • Governments are increasing energy efficiency in buildings through various policies to reduce building energy consumption. In 2002, the European Union adopted a building energy performance guideline to set minimum efficiency standards for residential and commercial buildings. Starting in 2020, all EU member states should ensure that all buildings are Near-Zero Energy Buildings (NZEB). In Korea, the government issued a zero-energy certification system. Since 2020, public buildings are required to cover energy consumption with the energy produced in buildings. As the demand for building energy simulation has increased to increase the energy efficiency of these buildings, the International Standard Organization (ISO) has created a standard for calculating building energy requirements called ISO 13790. This standard was revised to ISO 52016 in 2017. In this research, ISO 13790, which calculates the energy needs of existing buildings, and ISO 52016, which replaces them, are compared and analyzed, and applied to the calculation of heating energy needs of buildings. For models without thermal zoning(Case A), the difference in annual heating energy needs calculated from each criterion is $1.08kWh/m^2$, which is about 2% higher in ISO 52016. In the case of the thermal zoning model(Case B), the difference in annual heating energy needs calculated by each standard was $0.97kWh/m^2$, which was about 2% higher than ISO 52016. The heating energy needs model without thermal zoning has a higher energy needs than the heating energy needs model with thermal zoning. It is about 16% energy at $8.58kWh/m^2$ for ISO 13790 and $8.69kWh/m^2$ for ISO 52016.

Analysis of Heating Energy in a Korean-Style Apartment Building 2: The Difference according to Heating Type (한국형 아파트의 난방에너지 분석 2: 난방방식에 따른 차이)

  • Lee, Bong-Jin;Jung, Dong-Yeol;Lee, Sun;Hong, Hee-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.459-466
    • /
    • 2004
  • In order to save the energy in apartment houses, it is essential that the energy amount consumed in heating per household should be surveyed and analyzed according to heating method, which can be classified into unit, central and district methods. As a basis, we selected the household with nominal area of 32 py. because it accounts for the most percentage in Korea. It is estimated that the gas amount for cooking is 90 ㎥ and the energy amount for hot water supply is 11.41 GJ for a year, which is necessary to calculate the heating energy. Through the survey of actual energy consumption in Seoul and Gyeonggi, the energy amount used in heating can be obtained according to the heating type: 26.02 GJ/year for the unit heating, 28.09 GJ/year for the central heating and 40.61 GJ/year for the district heating.

Actual Energy Consumption Analysis of Temperature Control Strategies for Secondary Side Hot Water District Heating System with an Inverter (인버터시스템 적용 지역난방 시스템의 2차측 공급수 온도 제어방안에 따른 에너지사용량 실증 비교)

  • Cho, Sung-Hwan;Hong, Seong-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.4
    • /
    • pp.179-186
    • /
    • 2015
  • In this study, the actual energy consumption of the secondary side District Heating System (DHS) with different hot water supply temperature control methods is compared. The two methods are Outdoor Temperature Reset Control and Outdoor Temperature Predictive Control. While Outdoor Temperature Reset Control has been widely used for energy savings of the secondary side system, the results show that the Outdoor Temperature Predictive Control method saves more energy. In general, the Outdoor Temperature Predictive Control method lowers the supply temperature of hot water, and it reduces standby losses and increases the overall heat transfer value of heated spaces due to more flow into the space. During actual energy consumption monitoring, the Outdoor Temperature predictive Control method saves about 6.6% of energy when compared to the Outdoor Temperature Reset Control method. Also, it is found that at partial load condition, such as during daytime, the fluctuation of hot water supply temperature with Outdoor Temperature Reset Control is more severe than that with Outdoor Temperature Predictive Control. Thus, it proves that Outdoor Temperature Predictive Control is more stable even at partial load conditions.