• Title/Summary/Keyword: heating element

Search Result 536, Processing Time 0.028 seconds

Application of a CNT Surface Heating Element to the Ship Equipment (탄소나노튜브 면상발열체의 선박 기자재 적용 연구)

  • Bae, Sang-Eun;Lee, Woon-Seek
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.673-680
    • /
    • 2019
  • This study investigates the validity of applying new carbon nanotube (CNT, Carbon Nano Tube) surface heaters, which are applied in combination with various products, to the vessel's materials, and proposes the commercializable products accordingly. In order to actually apply a CNT surface heating system technology to the ship's equipment for the first time in Korea, we carried out the interview of experts in the technology field and the due diligence of the shipyard, and presented the technology road map for the selected three items. Finally, for "Heating System of Ship Fuel Tank" with the highest commercialization potential, we proposed a conceptual diagram to enable the final development of the product through the product analysis.

Hot Wire Wind Speed Sensor System Without Ambient Temperature Compensation (주변 온도보상이 필요 없는 열선식 풍속 센서 시스템)

  • Sung, Junkyu;Lee, Keunwoo;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.10
    • /
    • pp.1188-1194
    • /
    • 2019
  • Among the many ways to measure the flow of fluid the hot air wind speed sensor is a device for measuring the speed or temperature by heat transfer of a fluid. However, the hot wire wind speed sensor is sensitive to external environmental factors, and has a disadvantage of inaccuracy due to ambient temperature, humidity, and signal noise. In order to compensate for this disadvantage, advanced technology has been introduced by adding temperature compensation circuits, but it is expensive. In order to solve this problem, this paper studies the wind speed sensor that does not need temperature compensation. Heated wind speed sensors are very vulnerable to the ambient temperature, which is generated by electronic circuits, even among external environmental factors. in order to improve this, the auxiliary heating element is additionally installed in the heating element to control a constant temperature difference between the auxiliary heating element and the heating element.

Experimental Study on Internal Temperature Change Induced by Heating Element Attached to Tunnel Lining Surface (터널 라이닝 표면에 부착된 발열체로 인한 내부 온도 변화의 실험적 연구)

  • Jin, Hyunwoo;Hwang, Youngcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.11
    • /
    • pp.35-40
    • /
    • 2017
  • The rearside of concrete lining of tunnels constructed in cold region might experience on freezing due to the low temperature. This causes damage of concrete lining resulting in adverse affect on the durability as well as integrity of tunnel structure by causing damage to the concrete lining. In order to prevent the rearside of tunnel lining from freeing, the temperature change inside the concrete lining was measured by attaching a heating element to the tunnel lining surface and generating heat for a certain period of time. A special freezing chamber was developed to conduct the experiments considering in-situ environment. The carbone nanotube (CNT) was used as a heating element in this study. The temperature distribution of the concrete lining was measured by applying the heat to the heating element. The effect of the outside temperature and heating duration were analyzed.

Fabrication and resistance heating properties of flexible SiC fiber rope as heating elements (유연한 탄화규소 섬유 로프 발열체의 제조와 저항 발열 특성)

  • Joo, Young Jun;Cho, Kwang Youn
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.6
    • /
    • pp.258-263
    • /
    • 2020
  • Silicon carbide (SiC) fibers mainly fabricated from polycarbosilane, a ceramic precursor, are applied as reinforcing materials for ceramic matrix composites (CMCs) because of their high temperature oxidation resistance, tensile strength, and light weight. In this study, continuous SiC fibers used to fabricate rope-type flexible heating elements capable of generating high-temperature heat (> 650℃). For high-efficiency heating elements, the resistance of SiC fiber rope was measured by 2-point probe method according to the cross-sectional area and length. In addition, the fabrication conditions of rope-type SiC fiber heating elements were optimized by controlling the oxygen impurities and the size of crystal grains present in the amorphous SiC fiber. As a result, the SiC fiber heating element having a resistance range of about 100~200 Ω exhibited an excellent power consumption efficiency of 1.5 times compared to that of the carbon fiber heating element.

A Study on Application of Warm Air Circulator by Using the Carbon Heating Element with Particle Type (입상 탄소 발열체의 열원을 이용한 온풍기의 적용에 관한 연구)

  • Bae, K.Y.;Lee, K.S.;Kong, T.W.;Chung, H.S.;Jeong, H.Y.;Chung, H.T.
    • Journal of Power System Engineering
    • /
    • v.7 no.4
    • /
    • pp.31-37
    • /
    • 2003
  • This paper is a study on application of warm air circulator by using the carbon heating element with particle type. The main variables are the input current and amount of carbon heating source for experimental characteristics. The experimental results are obtained as follows. As the input current and temperature are increased, the resistance of heat source is decreased about $20{\sim}25%$ by the effect of negative resistance. As the amount of heating source is small, Joule heat is large with the input current. When the amount of heating source is 300 and the input current is 15A, the value of Joule heat is about 4604.6kJ/h. The heat production efficiency of carbon heating source is larger about 10% than the sheath heater.

  • PDF

The Effect of pain control and improve function of knee applied to osteoarthritis by carbon surface heating (퇴행성 관절염 환자에게 적용한 탄소면상발열체가 통증조절과 슬관절 기능 향상에 미치는 효과)

  • Son, Min-Young;Lee, Byung-Hoon;Oh, Kyeong-Ae;Park, Jong
    • Journal of Digital Convergence
    • /
    • v.11 no.9
    • /
    • pp.247-254
    • /
    • 2013
  • This study was to investigate the effects of pain control and improvement function to far infrared ray of carbon surface heating element applied on elderly women with knee osteoarthritis. The subjects for this study were forty-five subjects with osteoarthritis, who were divided convenice sampling into 3 groups, control(15 female, no intervention), ceramic far infrared ray(15 female, applied ceramic far infrared rays) and carbon surface-heating(15 female, applied carbon surface-heating) after treatment measuring VAS, PPT and K-WOMAC. These results represent decreased pain and improved function by applied carbon surface heating element and ceramic far infrared ray on osteoarthritis knee. Therefore, carbon surface heating element will be a good treatment for osteoarthritis.

A Study on the Flat-Type Induction Heating of Steel Plate (강판표면의 유도가열에 관한 연구)

  • Yun, Jin-Oh;Yang, Young-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.948-954
    • /
    • 2004
  • Induction heating is a process that is accompanied with magnetic and thermal situation. When the high-frequency current flows in the coil, induced eddy current generates heat to conductor. To simulate an induction and induction heating process, the finite element analysis program was developed. A coupling method between the magnetic and thermal routines was developed. In the process of magnetic analysis and thermal analysis, magnetic material properties and thermal material properties depending on temperature are taken into consideration. In this paper, to predict the angular deformation, temperature difference and the shape of heat affected zone were discussed. Also appropriate coil shape and other process variables for maximum angular deformation were proposed.

Simulation of Heat Supply Control of Continuous Heating System of Multistoried Apartment in Consideration of Radiation Heat Transfer (복사열전달을 고려한 고층아파트 연속난방 열공급제어 시뮬레이션)

  • Choi, Y.D.;Hong, J.K.;Yoon, J.H.;Lee, N.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.2
    • /
    • pp.78-92
    • /
    • 1994
  • Thermal performance of pipe network of continuous heating system controlled by thermostat and flow control valve was simulated in consideration of radiation heat transfer and solved by linear analysis method. Thermal performance of real apartment building with radiant floor heating system was simulated by equivalence heat resistance-capacity method. This method enables to simulate the unsteady variation of temperature or each element of building. Heat transfer characteristics of each element were also investigated.

  • PDF

Optimal Positioning of Heating Lines in a Compression Molding Die Using the Boundary Element Method (경계요소법을 이용한 압축성형다이 가열선의 최적위치 설계)

  • 이부윤;조종래
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1478-1485
    • /
    • 1993
  • A shape optimization problem is formulated to determine the optimal position of heating lines in a compression molding die. The objective of the problem is that the cavity surface would be maintained by a prescribed uniform temperature. A boundary integral equation for the sensitivity of the temperature in terms of hole position is derived using the method of shape design sensitivity analysis. The boundary element method is employed to analyze the temperature and sensitivity field of the die. The sensitivity calculation algorithm is incorporated in an optimization routine. To demonstrate a numerical implementation, an example problem arising in thermal design of a compression molding die is dealt with, showing that the number of heating lines chosen for the die strongly affects the ultimate uniformity of the cavity surface temperature.

Process Design of the Hot Pipe Bending Process Using High Frequency Induction Heating (고주파 유도가열을 이용한 열간 파이프 벤딩 공정 설계)

  • Ryu, Gyeong-Hui;Lee, Dong-Ju;Kim, Dong-Jin;Kim, Byeong-Min;Kim, Gwang-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.110-121
    • /
    • 2001
  • During hot pipe bending using induction heating, the wall of bending outside is thinned by tensile stress. In design requirement, the reduction of wall thickness is not allowed to exceed 12.5%. So in this study, two methods of bending, one is loading of reverse moment and the other is loading of temperature gradient, have been investigated to design pipe bending process that satisfy design requirements. For this purpose, finite element analysis with a bending radius 2Do(outer diameter of pipe) has been performed to calculate proper reverse moment and temperature gradient to be applied. Induction heating process has been analyzed to estimate influence of heating process parameters on heating characteristic by finite difference method. Then pipe bending experiments have been performed for verification of finite element and finite difference analysis results. Experimental results are in good agreement with the results of simulations.

  • PDF