• Title/Summary/Keyword: heating correction

Search Result 48, Processing Time 0.024 seconds

A Study on Characteristic Analysis of AC to AC Current-Fed Type High Frequency Resonant Inverter with High Power Factor (고역율 AC/AC 전류형 고주파 공진 인버터의 특성해석에 관한 연구)

  • Kim, Jong-Hae;Won, Jae-Sun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.1
    • /
    • pp.16-28
    • /
    • 2014
  • This paper presents a novel high-power-factor circuit topology of AC to AC current-fed type high frequency resonant inverter which includes the function of power factor correction(PFC) in the proposed inverter to operate the AC input block with high power factor. The proposed circuit topology of AC to AC current fed type high resonant inverter removes DC link electrolytic capacitor and has also the one of power factor correction(PFC) in the inverter circuit without an additional PFC circuit since the input current by constituting it in parallel as an unit inverter, which assumes the class-E high frequency resonant inverter of conventional current-fed type, flows in the form of the resultant current flowing through each constant current reactor($L_{d1}$, $L_{d2}$). The circuit analysis of proposed inverter is generally described by adopting the normalized parameters and the evaluation of its operating characteristics are conducted by using the parameters such as the ratio of switching and resonant frequency(${\mu}$), coupling coefficient(k) and so on. An example of procedure for circuit design based on the characteristic values obtained from the theoretical analysis is presented. To confirm the validity of the theoretical analysis, the experimental results are also presented. In the future, the proposed inverter shows it can be practically used as power supply system for induction heating application, DC-DC converter etc.

The Characteristics of the winter season window and indoor temperature due to the indoor plant (동계 이중외피와 내부식재에 의한 실내 온도 특성에 관한 연구)

  • Yun, Young-Il;Cho, Ju-Young
    • KIEAE Journal
    • /
    • v.15 no.5
    • /
    • pp.107-112
    • /
    • 2015
  • Purpose: This study desires to investigate an effect of indoor temperature, humidity, and illuminance targeting a planting system of double-skin facade and cavity space adjacent to the outside within a certain period of winter. Through this, the study suggests a basic material about an energy conservation effect of double window system using planting to reduce heating load of a building in winter, so desires to contribute to indoor thermal comfort effect and illuminance correction study of double window and indoor plant. Method: Considering effects such as day and night climatic elements and air conditions in winter, illuminance measurement was conducted through a double-skin facade of space, a subject of the measurement, on the basis of practical residence time of a resident, and this study analyzed characteristics of indoor illuminance about this. The study measured and compared a change of insolation, dry-bulb temperature, and relative humidity at each indoor-outdoor measuring point, so measured and compared characteristics of an indoor temperature effect by elements of double-skin facade and indoor plant. Result: Through this study, the researcher could determine that indoor plant within double window in winter not only blocks solar radiation but also photosynthesizes, so is somewhat disadvantageous to winter thermal comfort reducing heating load. In addition, solar radiation going through interior plays a role to bring down somewhat high humidity to about 50% of reasonable humidity, so plays a direct role of maintenance of comfortable indoor space. Although there are effects such as blocking of solar radiation and temperature reduction, this has a positive influence on humidity control and proper illuminance distribution. The researcher could determine that illuminance, temperature, and humidity by solar radiation penetration for the whole measuring time play a role to supplement indoor environment mutually.

The Technology for On-line Measurement of Coal Properties by using Near-Infrared (근적외선을 이용한 온라인 석탄 성상분석 방법)

  • Kim, Dong-Won;Lee, Jong-Min;Kim, Jae-Sung;Kim, Hak-Jong
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.596-603
    • /
    • 2007
  • Rapid or on-line coal analysis is of great interest in coal industry as it would allow efficient plant operation. Multivariate analysis has been applied to near-infrared(NIR) spectra coal for investigating the relationship between coal properties(%) (moisture, ash, volatile matter, fixed carbon, carbon, hydrogen, nitrogen, oxygen, sulfur), heating value(kcal/kg) and corresponding near-infrared spectral data. The quantitative analysis was carried out by applying PLS(partial least squares regression) to determine a methodology able to establish a relationship between coal properties and NIR spectral data being applied mathematical pre-treatments for minimizing the physical features of the samples. As a results of the analysis, this technique is able to classify the species of coals and to predict the all coal properties except ash, nitrogen and sulfur. The efficient operation of coal fired power plant is expected owing to real time on-line coal analysis of moisture and heating value.

Prediction of Blooming Dates of Spring Flowers by Using Digital Temperature Forecasts and Phenology Models (동네예보와 생물계절모형을 이용한 봄꽃개화일 예측)

  • Kim, Jin-Hee;Lee, Eun-Jung;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.1
    • /
    • pp.40-49
    • /
    • 2013
  • Current service system of the Korea Meteorological Administration (KMA) for blooming date forecasting in spring depends on regression equations derived from long term observations in both temperature and phenology at a given station. This regression based system does not allow a timely correction or update of forecasts that are highly sensitive to fluctuating weather conditions. Furthermore, the system cannot afford plant responses to climate extremes which were not observed before. Most of all, this method may not be applicable to locations other than that which the regression equations were derived from. This note suggests a way to replace the location restricted regression equations with a thermal time based phenology model to complement the KMA blooming forecast system. Necessary parameters such as reference temperature, chilling requirement and heating requirement were derived from phenology data for forsythia, azaleas and Japanese cherry at 29 KMA stations for the 1951-1980 period to optimize spring phenology prediction model for each species. Best fit models for each species were used to predict blooming dates and the results were compared with the observed dates to produce a correction grid across the whole nation. The models were driven by the KMA's daily temperature data at a 5km grid spacing and subsequently adjusted by the correction grid to produce the blooming date maps. Validation with the 1971-2012 period data showed the RMSE of 2-3 days for Japanese cherry, showing a feasibility of operational service; whereas higher RMSE values were observed with forsythia and azaleas.

Single Phase Utility Frequency AC-High Frequency AC Matrix Converter Using One-Chip Reverse Blocking IGBTs based Bidirectional Switches

  • Hisayuki, Sugimura;Kwon, Soon-Kurl;Lee, Hyun-Woo;Mutsuo, Nakaoka
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.125-128
    • /
    • 2006
  • This paper presents a novel type soft switching PWM power frequency AC-AC converter using bidirectional active switches or single phase utility frequency AC-high frequency AC matrix converter. This converter can directly convert utility frequency AC (UFAC, 50Hz/60Hz) power to high frequency AC (HFAC) power ranging more than 20kHz up to 100kHz. A novel soft switching PWM prototype of high frequency multi-resonant PWM controlled UFAC-HFAC matrix converter using antiparallel one-chip reverse blocking IGBTs manufactured by IXYS corp. is based on the soft switching resonance with asymmetrical duty cycle PWM strategy. This single phase UFAC-HFAC matrix converter has some remarkable features as electrolytic capacitor DC busline linkless topology, unity power factor correction and sine-wave line current shaping, simple configuration with minimum circuit components, high efficiency and downsizing. This series load resonant UFAC-HFAC matrix converter, incorporating bidirectional active power switches is developed and implemented for high efficiency consumer induction heated food cooking appliances in home uses and business-uses. Its operating performances as soft switching operating ranges and high frequency effective power regulation characteristics are illustrated and discussed on the basis of simulation and experimental results.

  • PDF

A Study on Remaining Efficiency of Thermal Straightening after Block Lifting

  • Ha, Yunsok;Yi, Myungsu
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.3
    • /
    • pp.148-156
    • /
    • 2015
  • Deck plates of ships or offshore structures would make out-of-plane distortion for their thin thickness. These distortions are usually straightened by thermal straightening such as flame heating method. After thermal straightening, the blocks are lifted and moved by cranes to assemble it at dry-dock stage. After this lifting process, out-of-plane deformation again happens frequently. And then, they continuously cause quality and accuracy problems in the final dry-dock process. So, it takes more time for repair and correction working. According to preceding research, the lifting process by cranes would offset the effect on thermal straightening. The target of this study is to develop a methodology analyzing the remaining efficiency of thermal straightening after block lifting. The development was based on the assumption of yield state at straightening region. Therefore the remaining efficiency was obtained by different stiffness slope while lifting & relieving. The efficiency formula was designed using inherent strain, and we made a table of zero-efficiency by cooling speed and class rule's steels. As a result, if the stress orthogonal to straightened line is calculated during lifting analysis by FEA, the efficiency can be obtained linearly to the values in the table. Finally, even optimized carling position can be designed by considering the regional data from series project and welding region on deck.

Exergy and exergoeconomic analysis of hydrogen and power cogeneration using an HTR plant

  • Norouzi, Nima;Talebi, Saeed;Fani, Maryam;Khajehpour, Hossein
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2753-2760
    • /
    • 2021
  • This paper proposes using sodium-cooled fast reactor technologies for use in hydrogen vapor methane (SMR) modification. Using three independent energy rings in the Russian BN-600 fast reactor, steam is generated in one of the steam-generating cycles with a pressure of 13.1 MPa and a temperature of 505 ℃. The reactor's second energy cycles can increase the gas-steam mixture's temperature to the required amount for efficient correction. The 620 ton/hr 540 ℃ steam generated in this cycle is sufficient to supply a high-temperature synthesis current source (700 ℃), which raises the steam-gas mixture's temperature in the reactor. The proposed technology provides a high rate of hydrogen production (approximately 144.5 ton/hr of standard H2), also up to 25% of the original natural gas, in line with existing SMR technology for preparing and heating steam and gas mixtures will be saved. Also, exergy analysis results show that the plant's efficiency reaches 78.5% using HTR heat for combined hydrogen and power generation.

Experimental Study on the Infiltration Loss in Plastic Greenhouses Equipped with Thermal Curtains (보온커튼을 설치한 플라스틱 온실의 틈새환기전열량 실측조사)

  • Nam, Sang-Woon;Shin, Hyun-Ho
    • Journal of Bio-Environment Control
    • /
    • v.24 no.2
    • /
    • pp.100-105
    • /
    • 2015
  • The calculation method of infiltration loss in greenhouse has different ideas in each design standard, so there is a big difference in each method according to the size of greenhouses, it is necessary to establish a more accurate method that can be applied to the domestic. In order to provide basic data for the formulation of the calculation method of greenhouse heating load, we measured the infiltration rates using the tracer gas method in plastic greenhouses equipped with various thermal curtains. And then the calculation methods of infiltration loss in greenhouses were reviewed. Infiltration rates of the multi-span and single-span greenhouses were measured in the range of $0.042{\sim}0.245h^{-1}$ and $0.056{\sim}0.336h^{-1}$ respectively, single-span greenhouses appeared to be slightly larger. Infiltration rate of the greenhouse has been shown to significantly decrease depending on the number of thermal curtain layers without separation of single-span and multi-span. As the temperature differences between indoor and outdoor increase, the infiltration rates tended to increase. In the range of low wind speed during the experiments, changes of infiltration rate according to the outdoor wind speed could not find a consistent trend. Infiltration rates for the greenhouse heating design need to present the values at the appropriate temperature difference between indoor and outdoor. The change in the infiltration rate according to the wind speed does not need to be considered because the maximum heating load is calculated at a low wind speed range. However the correction factors to increase slightly the maximum heating load including the overall heat transfer coefficient should be applied at the strong wind regions. After reviewing the calculation method of infiltration loss, a method of using the infiltration heat transfer coefficient and the greenhouse covering area was found to have a problem, a method of using the infiltration rate and the greenhouse volume was determined to be reasonable.

A Study on Price Asymmetries in Local Petroleum Markets (석유제품의 가격 비대칭성에 관한 연구)

  • Kim, Jin Hyung
    • Environmental and Resource Economics Review
    • /
    • v.16 no.4
    • /
    • pp.833-854
    • /
    • 2007
  • Output prices tend to respond faster to input price increases than to decreases. The 'rockets and feathers' hypothesis of asymmetric price behavior in petroleum market is tested by a full adjustment error correction model. Using monthly data for the period January 1977 to June 2006, evidence is found that there is a significant degree of asymmetry in the adjustment of wholesale prices to increases and to decreases in crude oil price. A similar hypothesis in regard to the exchange rate is also rejected by the data. Using weekly data over the period examined, evidence of asymmetry for gasoline, diesel and heating oil is also found in the transmission of price changes from wholesale to retail: retail prices increase more quickly in response to the wholesale price increases than to wholesale price decreases.

  • PDF

Predicting Cherry Flowering Date Using a Plant Phonology Model (생물계절모형을 이용한 벚꽃 개화일 예측)

  • Jung J. E.;Kwon E. Y.;Chung U. R.;Yun J. I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.2
    • /
    • pp.148-155
    • /
    • 2005
  • An accurate prediction of blooming date is crucial for many authorities to schedule and organize successful spring flower festivals in Korea. The Korea Meteorological Administration (KMA) has been using regression models combined with a subjective correction by forecasters to issue blooming date forecasts for major cities. Using mean monthly temperature data for February (observed) and March (predicted), they issue blooming date forecasts in late February to early March each year. The method has been proved accurate enough for the purpose of scheduling spring festivals in the relevant cities, but cannot be used in areas where no official climate and phenology data are available. We suggest a thermal time-based two-step phenological model for predicting the blooming dates of spring flowers, which can be applied to any geographic location regardless of data availability. The model consists of two sequential periods: the rest period described by chilling requirement and the forcing period described by heating requirement. It requires daily maximum and minimum temperature as an input and calculates daily chill units until a pre-determined chilling requirement for rest release. After the projected rest release date, it accumulates daily heat units (growing degree days) until a pre- determined heating requirement for flowering. Model parameters were derived from the observed bud-burst and flowering dates of cherry tree (Prunus serrulata var. spontanea) at KMA Seoul station along with daily temperature data for 1923-1950. The model was applied to the 1955-2004 daily temperature data to estimate the cherry blooming dates and the deviations from the observed dates were compared with those predicted by the KMA method. Our model performed better than the KMA method in predicting the cherry blooming dates during the last 50 years (MAE = 2.31 vs. 1.58, RMSE = 2.96 vs. 2.09), showing a strong feasibility of operational application.