• Title/Summary/Keyword: heater design

Search Result 340, Processing Time 0.028 seconds

Thermal Design of PCR Chip for LOC (랩온어칩을 위한 중합효소 연쇄반응 칩의 열설계)

  • Kim, Deok-Jong;Kim, Jae-Yun;Park, Sang-Jin;Heo, Pil-U;Yun, Ui-Su
    • 연구논문집
    • /
    • s.33
    • /
    • pp.17-25
    • /
    • 2003
  • In this work, thermal design of a PCR chip for LOC is systematically conducted. From the numerical simulation of a PCR chip based on the finite volume method, how to control the average temperature of a PCR chip and the temperature difference between the denaturation zone and the annealing zone is presented. The average temperature is shown to be controlled by adjusting heat input and a cooler as well as a heater is shown to be necessary to obtain three individual temperature zones for polymerase chain reaction. To reduce the time required, a heat sink for the cooler is not included in the calculation domain for the PCR chip and heat sink design is conducted separately by using a compact modeling method, the porous medium approach.

  • PDF

Development of Control Software for KOREA Standard EMU (도시철도차량용 국내 표준모델의 주제어 S/W개발(2))

  • 안태기;한성호;백종현;이수길;박현준
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.302-309
    • /
    • 1999
  • This paper is intended to provide a method to design control software fur the TCMS, train control and monitoring system. The TCMS with this control software will be applied KOREA Standard EMU. The control software is designed by SCADE Case tool to concern safety and reliability. The function for the EMU is implemented in software easily programmed, using a functional block, graphic programming language. the control software has modular design and each module is tested with SCADE simulator. This time we focus a HVAC(heater, ventilation and air conditioner controller) control module, present a design method and a simulation method for that module.

  • PDF

A new approach to working coil design for a high frequency full bridge series resonant inverter fitted contactless induction heater

  • Dhar, Sujit;Dutta, Biswajit;Ghoshroy, Debasmita;Roy, Debabrata;Sadhu, Pradip Kumar;Ganguly, Ankur;Sanyal, Amar Nath;Das, Soumya
    • Advances in Computational Design
    • /
    • v.2 no.4
    • /
    • pp.283-291
    • /
    • 2017
  • High frequency full bridge series resonant inverters have become increasingly popular among power supply designers. One of the most important parameter for a High Frequency Full Bridge Series Resonant Inverter is optimal coil design. The optimal coil designing procedure is not a easy task. This paper deals with the New Approach to Optimal Design Procedure for a Real-time High Frequency Full Bridge Series Resonant Inverter in Induction Heating Equipment devices. A new design to experimental modelling of the physical properties and a practical power input simulation process for the non-sinusoidal input waveform is accepted. The design sensitivity analysis with Levenberg-Marquardt technique is used for the optimal design process. The proposed technique is applied to an Induction Heating Equipment devices model and the result is verified by real-time experiment. The main advantages of this design technique is to achieve more accurate temperature control with a huge amount of power saving.

Fabrication Technology of Turbo Charger Housing for Riser Minimizing by Fusion S/W Application and its Experimental Investigation (압탕 최소화를 위한 터보차저하우징의 융합 S/W 응용 제조기술 및 실험적 검증)

  • Lee, Hak-Chul;Seo, Pan-Ki;Jin, Chul-Kyu;Seo, Hyung-Yoon;Kang, Chung-Gil
    • Journal of Korea Foundry Society
    • /
    • v.37 no.1
    • /
    • pp.1-13
    • /
    • 2017
  • The purpose of this study is to increase the part recovery rate (to more than 70%) during the casting of a ductile cast iron turbo charger housing using a heater around the riser. Before creating a casting mold, various runner and riser systems were designed and analyzed with a casting simulation analysis tool. The design variables were the heater temperature, top insulation, riser location, riser diameter and the riser shape. During the feeding from the riser to the part, the reverse model was better than the forward model. When heating the riser (above $600^{\circ}C$), solidification of the riser was delayed and the feeding effect was suitable compared to that without heating. At a higher heating temperature, less solidification shrinkage and porosity were noted inside the part. On the basis of a casting simulation, eight molds were fabricated and casting experiments were conducted. According to the experimental conditions, external and internal defects were analyzed and mechanical properties were tested. The ultimate tensile strength and elongation outcome were correspondingly more than 540MPa and 5% after a heat treatment. In addition, a maximum part recovery rate of 86% was achieved in this study.

Design of a Shape Transition Nozzle for Lab-scale Supersonic Combustion Experimental Equipment (소형 초음속 연소시험 장치를 위한 형상 천이 노즐 설계)

  • Sung, Bu-Kyeng;Hwang, Won-Sub;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.3
    • /
    • pp.207-215
    • /
    • 2020
  • Design of a shape transition nozzle is carried out as a part of building a lab-scale supersonic combustion experimental equipment. In order to connect directly the circular shaped vitiation air heater to the square shaped scramjet combustor, area change is evaluated by using the method of characteristics. Shape transition function is introduced to control the transition rate. Boundary layer correction was made through the three-dimensional computational fluid dynamics with the assessment on the several shape transition functions. The shape transition nozzle is proved minimizing the growth of boundary layer at the center of the rectangular nozzle surfaces that caused by the pressure gradient at the corners of the rectangular nozzle and the following recirculation regions.

Numerical Study on the Process of Supersonic Flow Formation in a Direct-Connect Supersonic Combustor (Direct-Connect 초음속 연소기 내 초음속 유동 형성과정에 대한 수치해석)

  • Jeong, Seong-Min;Han, Hyunh-Seok;Sung, Bu-Kyeng;Lee, Eun-Sung;Choi, Jeong-Yoel
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.11
    • /
    • pp.889-902
    • /
    • 2020
  • In this study, a numerical analysis was performed to confirm the formation of supersonic flow and the stabilization time satisfying the design condition in a Direct-connect supersonic combustor. The process was examined in which the high-pressure gas of vitiation air heater propagates downstream to the supersonic combustor and forms a supersonic flow field. It was confirmed through the analysis of pressure and temperature that the supersonic flow field satisfies the design points of Mach number 2.0 and 1,000 K, and requires a minimum of 4.0 ms for stabilization. These results indicate that the time required for the supersonic flow field stabilization should be taken into account when testing for the supersonic combustion experiment.

CFD Analysis for Simulating Very-High-Temperature Reactor by Designing Experimental Loop (초고온가스로 모사 실험회로 설계를 위한 전산유체역학 해석)

  • Yoon, Churl;Hong, Sung-Deok;Noh, Jae-Man;Kim, Yong-Wan;Chang, Jong-Hwa
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.553-561
    • /
    • 2010
  • A medium-scale helium loop that can simulate a VHTR (very-high-temperature reactor) is now under construction at the Korea Atomic Energy Research Institute. The heaters of the test helium loop electrically heat helium fluid up to $950^{\circ}C$ at pressures of 1 to 9 MPa. To optimize the design specifications of the experimental helium loop, the conjugate heat transfer in the high-temperature helium heater was analyzed by performing a CFD simulation. The analysis results indicate that the maximum temperature does not exceed the allowable limit. It is confirmed that the thermal characteristics of the loop with the given geometry satisfy the design requirements.

Thermal Model Correlation and Heater Design Verification for LEO Satellite Optical Payload's Thermal Analysis Model Verification (저궤도 위성 광학탑재체의 열해석 모델 검증을 위한 열모델 보정 및 히터 설계)

  • Kim, Min-Jae;Huh, Hwan-Il;Kim, Sang-Ho;Chang, Su-Young;Lee, Deog-Gyu;Lee, Seung-Hoon;Choi, Hae-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.11
    • /
    • pp.1069-1076
    • /
    • 2011
  • All of the satellite components must be operated within the permissible temperature range during the mission in orbit. Therefore, thermal design is performed to develop verified thermal model and to secure thermal stability on the ground. In this study, thermal model correlation was performed to satisfy the criteria of correlation using ground thermal vacuum/thermal balance test results of LEO satellite optical payload. We also secured verified thermal model by controlling operating cycle of flight heaters. In addition, it was confirmed that all components are within the permissible temperature range through conducting orbit environment thermal analysis. We also secured thermal stability of the satellite.

Thermal and telemetry module design for satellite camera

  • Kong, Jong-Pil;Yong, Sang-Soon;Heo, Haeng-Pal;Kim, Young-Sun;Youn, Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.229-234
    • /
    • 2002
  • Under the hostile influence of the extreme space environmental conditions due to the deep space and direct solar flux, the thermal control in space applications is especially of major importance. There are tight temperature range restrictions for electro-optical elements while on the other hand there are low power consumption requirements due to the limited energy sources on the spacecraft. So, we usually have strong requirement of thermal and power control module in space applications. In this paper, the design concept of a thermal and power control module in the MSC(Multi-Spectral Camera) system which will be a payload on KOMPSATII is described in terms of H/W & S/W. This thermal and power control module, called THTM(Thermal and Telemetry Module) in MSC, resides inside the PMU(Payload Management Unit) which is responsible for the proper management of the MSC payload for controlling and monitoring the temperature insides the EOS(Electro-Optic System) and gathering all the analog telemetry from all the MSC sub-units, etc. Particularly, the designed heater controller has the special mode of "duty cycle" in addition to normal closed loop control mode as usual. THTM controls heaters in open loop according to on/off set time designed through analysis in duty cycle mode in case of all thermistor failure whereas it controls heaters by comparing the thermistor value to temperature based on closed loop in normal mode. And a designed THTM provides a checking and protection method against the failure in thermal control command using the test pulse in command itself.

  • PDF

Measurement of Calorific Value Using Flame Calorimeter (전자 소자를 이용한 연소열 측정)

  • Lim, Ki-Won;Jun, Jin-Young;Lee, Byeong-Jun
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.3
    • /
    • pp.40-47
    • /
    • 2010
  • Calorific value of mixed gas, like liquefied natural gas (LNG), is strongly depends on its compositions which are affected by the mining place and producing time. The variation in calorific value have an direct influence on the combustion characteristics and performances of boiler, burner, vehicle, power plants etc. Thus, developing experimental method to measure exact calorific value is becoming an issue in the related industrial fields. Flame calorimeter is developed to get calorific value at the dynamic equilibrium state using electric substitution method. Refrigerant-11 carries heat from combustor and/or heater to the Peltier elements which pumped it out to the cooling water. It is found out that error in the measured calorific value of methane is 2.86% compared with the theoretical one. Developed design technique and the experimental data will be applied to design the national standard gas calorific value measuring apparatus.