• Title/Summary/Keyword: heater design

Search Result 340, Processing Time 0.026 seconds

Design and Optimization of TG-CVI Heater (TG-CVI용 히터 형상설계 및 최적화)

  • 이성호;홍성석;구형회
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.244-249
    • /
    • 2000
  • Thermal gradient chemical vapor infiltration (TG-CVI) process, which is one of the CVI techniques to densify a porous fiber preform, requires for a heater to have uniform surface temperature distribution. Thus, it is essential to design the shape of the heater and to predict the temperature distribution when the heater has a profile which is not a simple cylinder. In this study, an analytical method has been used to design the inner profile of a conical heater showing uniform temperature distribution, if its outer shape is specified. Temperature distribution on the heater surface has been calculated with the finite difference method and compared with the experimental results. When a heater had a combined profile with a large cone and a small cylinder, temperature was higher in the cylindrical part. To reduce the temperature difference between these areas, a hole-machining method has been proposed including other possible ones. A shape design and optimization program has been made to improve the temperature uniformity of the TG-CVI heater better than that designed with the analytical method.

  • PDF

Development of Thermal Management System Heater for Fuel Cell Vehicles (연료전지 자동차용 TMS 히터 개발)

  • Han, Sudong;Kim, Sungkyun;Kim, Chimyung;Park, Yongsun;Ahn, Byungki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.484-492
    • /
    • 2012
  • The TMS(Thermal Management System) heater in a fuel cell vehicle has been developed to prevent a decline of fuel cell durability and cold start durability. Main functions of the COD(Cathode Oxygen Depletion) heater are depletion of oxygen in a cathode as heat energy and consumption of electric power for rapid warming up of a fuel cell stack. This paper covers subjects including the design specification of a heater, heater controller for detection of overheat and reliability assessment including coolant pressure cycle test of a heater. To verify the design concept, burst pressure and deformation analysis of plastic housing were carried out. Also, temperature distribution analysis of heater surface and coolant inside of housing were carried out to verify the design concept. By designing the plastic housing instead of a steel housing, the 30% weight lightening and 50% cost reduction were attained. A module-based design of a TMS system including a heater or reducing the watt density of a heater is a problem to be solved in the near future work.

Thermal Design for Satellite Propulsion System by Thermal Analysis (열해석에 의한 인공위성 추진시스템 열설계)

  • Han, Cho-Young;Kim, Jeong-Soo;Rhee, Seung-Wu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.117-124
    • /
    • 2003
  • Thermal design fur satellite propulsion system has been performed. Overall design requirements and the constitution for propulsion system is described. To meet the thermal design requirements, both a primary and a redundant heater circuit, each with two thermostats placed in series, will protect each hydrazine-wetted components, even if one heater circuit fails to operate. Heater power is turned off if any one of these thermostats is opened at its higher setpoint. Thus, even if one thermostat is failed closed, the second thermostat will turn off the heater. All such components shall be insulated with MLI. Propulsion heater sizing based on the constant worst cold case condition is conducted through thermal analysis. All heaters selected fur propulsion components operate to prevent propellant freezing satisfying the thermal requirements for the propulsion subsystem over the worst case average voltage, i.e. 25 volts.

Thermal Design for KOMPSAT-2 Propulsion System (다목적실용위성 2호 추진계의 열설계)

  • Han, Cho-Young;Kim, Jeong-Soo;Lee, Kyun-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.77-82
    • /
    • 2001
  • Thermal design for KOMPSAT-2 propulsion system has been performed. Overall design requirements and the constitution for propulsion system is described. To meet the thermal design requirements, both a primary and a redundant heater circuit, each with two thermostats placed in series, will protect each hydrazine-wetted components, even if one heater circuit fails to operate. Heater power is turned off if any one of these thermostats is opened at its higher setpoint. Thus, even if one thermostat is failed closed, the second thermostat will turn off the heater. All such components shall be insulated with MLI. Propulsion heater sizing based on the constant worst cold case condition is conducted through thermal analysis. All heaters selected for propulsion components operate to prevent propellant freezing satisfying the thermal requirements for the propulsion subsystem over the worst case average voltage, i.e. 25 volts.

  • PDF

Design Alterations of a Leak Machine Structure for the Improved Leak Quality of Coolant Heater (Coolant Heater의 기밀성 품질 향상을 위한 Leak Test Machine 구조 개선)

  • Han, Dae Seong;Nam, Kyu Dong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.14-18
    • /
    • 2021
  • Electric Vehicle industry requires high technologies to stabilize apparatuses for the Coolant heater manufacturing. Vibrations of Leak Machine are one of the most critical factors for causing delivered of the defective product or poor inspection, which are the main reasons of the defects. In this study, the structure of the Leak Machine was analyzed through the experiment and the computer simulation to investigate the main reasons of the vibrations, and further to alter the design for the improved stability. And that design alterations were applied to the machine to identify the effects of those alterations. The result of the study shows that design alterations of the Leak Machine can effectively suppress about 97.8% of the vibrations, and further can improving the Inspection precision of the Coolant heater.

A Study on The Optimal Design of SiC Ceramic Heater (SiC계 세라믹 발열체의 최적 설계에 관한 연구)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1631-1634
    • /
    • 2009
  • Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites. Temperature rising time of sheath heater is 1.1 times faster than SiC ceramic heater. Heating insulation of SiC ceramic heater is 2.7 times larger than sheath heater. If SiC ceramic heater is one body type of a product application, contact resistance will decrease. I think that temperature initial rising time is faster than now. The more SiC ceramic heater is used for a long time, the more economic benefit is larger in the view point of heat insulation.

A Study on the Fabrication and Characteristics of Ceramic Heater Apparatus with High Efficiency (고효율 세라믹 발열체 제작 및 특성 시험에 관한 연구)

  • Cho, Hyun-Seob;Oh, Myoung-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1275-1278
    • /
    • 2012
  • Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of electroconductive ceramic composites. Temperature rising time of sheath heater is 1.1 times faster than SiC ceramic heater. Heating insulation of SiC ceramic heater is 2.7 times larger than sheath heater. If SiC ceramic heater is one body type of a product application, contact resistance will decrease. I think that temperature initial rising time is faster than now. The more SiC ceramic heater is used for a long time, the more economic benefit is larger in the view point of heat insulation.

Design and Fabrication of Heater-triggered Switching System for the Charging of Bi-2223 Pancake Load (Bi-2223 팬케익부하 충전용 히터-트리거 스위칭 장치의 설계 및 제작)

  • 김영식;윤용수;배덕권;안민철;임대준;김호민;고태국
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.1
    • /
    • pp.43-48
    • /
    • 2004
  • This paper deals with design and fabrication of heater-triggered switching system for the high-Tc superconducting (HTS) power supply with series-connected double-pancake load. Amongst all components, heater triggering is the most important element for the performance of HTS power supply. To fabricate the optimal heater-triggered system, its characteristics have been analysed through the simulation and expriment. The thermal analysis of switching parts of the Bi-2223 solenoid according to the heater input was carried out. Based upon the analysis, 8A electromagnet current and 1.5A DC Heater current were optimally derived, and 8s and 20s for the pumping period were selected in this experiment. In the experiment. the maximum pumping current reached about 24A with Bi-2223 pancake load of 6mH.

Temperature Distributions inside a Space Heater for Greenhouse (I) - Temperature Characteristics with Heating Oil - (시설원예용 온풍난방기내의 온도분포에 관한 연구 (I) - 난방유 사용시 온도특성 -)

  • 서정덕;김종진;최규성;신창식;노수영
    • Journal of Biosystems Engineering
    • /
    • v.24 no.4
    • /
    • pp.335-342
    • /
    • 1999
  • Air and flue gas temperature distributions in the space heater for greenhouse were measured to develop a thermal design technology for the space heater. Also, the characteristics of the fan supplying air to the space heater were investigated. The temperature of the flue gas inside the flue gas tube was linearly decreased as the lenght of than those of the flue gas with the oxygen concentration of 8.25% at the last exit of the second flue gas tube. Thus, the operating efficiency of the space heater could be increased with low air ratio decreased exhausting gas temperature and saved the energy consumption with decreased excess air flow. The temperature of the air supplied by fan was increased slowly around the first flue gas tube, meanwhile, increased sharply around the second flue gas tube due to large LMTD (Logarithmic Mean Temperature Difference) at the first flue gas tube than which of the second flue gas tube.

  • PDF

Analytical Investigation of In-direct Heater to Simulate Space Thermal Environment for Thermal Vacuum Test (열진공 시험용 비접촉식 우주 열환경 모사 장치의 해석적 검토)

  • Baek, Cheul-Woo;Shin, So-Min;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.2
    • /
    • pp.178-183
    • /
    • 2012
  • To simulate space thermal environment in thermal vacuum test, direct or in-direct heater has been applied on the radiator. Both of them, direct heater attached on the radiator and indirect heater with a distance from the radiator, simulate the heat fluxes from the Sun radiation, the Earth IR and Albedo. They also supply the heat fluxes to the radiator of spacecraft to achieve the target temperature according to thermal test conditions. In general, indirect heater is used when the heater is not allowed to attach on the radiator directly due to constraints of coating property or contamination. For in-direct heater design, it is needed to estimate the heat power to make the extreme test conditions and minimize the interference with heat exchange of radiator and shroud. In this study, optimized thermal design of in-direct heater is proposed and investigated by commercial S/W SINDA. The effective values of design factors are also derived.