• Title/Summary/Keyword: heat-treatment temperature

Search Result 3,075, Processing Time 0.033 seconds

The Effect of Heat Treatment Temperature on the Dimension and Handle of PET/PBT Fabric (가공공정 중 열처리 온도에 의한 PET/PBT 혼섬사 직물의 형태와 태의 변화)

  • 신혜원
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.27 no.5
    • /
    • pp.582-587
    • /
    • 2003
  • To examine the effect of heat treatment temperature in finishing process on PET/PBT Fabric, PET/PBT Fabrics were treated at different relaxing temp., pre-set temp., and final-set temp.. The dimensions such as thickness and density were measured, and the handles were evaluated by Kawabata system. In relaxing which was wet heat treatment, thickness and bulkiness were increased, and NUMERI, FUKURAMI, SOFUTOSA, and THV also were increased but KOSHI was decreased with elevating temperature. With elevating pre-set temp., thickness and bulkiness were decreased, but KOSHI was increased. NUMERI, FUKURAMI, SOFUTOSA, and THV were the best at 180$^{\circ}C$ pre-set treatment. In final-set which was dry heat treatment like pre-set, thickness, bulkiness, NUMERI, HUKURAMI, SOFUTOSA, and THV were decreased, but KOSHI value was increased with elevating temperature. Therefore the best heat treatment condition was 130$^{\circ}C$ relaxing, 180$^{\circ}C$ pre-set, and 160$^{\circ}C$ final-set. And the handle of PET/PBT Fabric was affected much more by relaxing temp. than pre-set temp. and final-set temp.

Development of Heat-treatment Furnace with Maximum Uniform Zone using Gas-phase Condensing Heat Exchange (기상응축 열교환을 이용한 고정밀 등온 가열로 개발)

  • Hong, Hyun-Seon;Kong, Man-Seek;Kang, Hwan-Kook
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.3
    • /
    • pp.162-168
    • /
    • 2009
  • A horizontal tube furnace with a wide uniform-temperature zone was developed using isothermal characteristics of a heat pipe. The heat pipe heating system consists of a concentric annular shaped stainless-steel container, sodium as a working fluid and a screen mesh wick structure. The performance test of the heat pipe revealed that temperature changes along seven consecutive positions of the heat pipe outer wall were less than${\pm}0.1^{\circ}C$, thereby ensuring the high isothermal property. The isothermal property of the heat pipe-adapted tube fumace was investigated and compared to a conventional non-heat pipe type tube furnace. The temperature distribution measurement showed that the uniform temperature zone, in which temperature change is less than${\pm}$1$^{\circ}$C, of the heat pipe employed tube furnace system was about three times longer compared to the conventional tube furnace system.

High Temperature Tensile Properties of Heat-resistant Cast Ferritic Stainless Steels (고내열 페라이트계 스테인레스 주강의 고온인장특성 평가)

  • Jeong, Hyeon Kyeong;Lee, Dong-Geun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.1
    • /
    • pp.10-16
    • /
    • 2021
  • Exhaust manifold is a very important component that is directly connected to air environment pollution and that requires strict mechanical properties such as high temperature fatigue and oxidation. Among stainless steels, the ferritic stainless steel with body-centered cubic structure shows excellent resistance of stress-corrosion cracking, ferromagnetic at room temperature, very excellent cold workability and may not be enhanced by heat treatment. The microstructural characteristics of four cast ferritic stainless steels which are high heat-resistant materials, were analyzed. By comparing and evaluating the mechanical properties at room temperature and high temperature in a range of 400℃~800℃, a database was established to control and predict the required properties and the mechanical properties of the final product. The precipitates of cast ferritic stainless steels were analyzed and the high-temperature deformation characteristics were evaluated by comparative analysis of hardness and tensile characteristics of four steels at room temperature and from 400℃ to 800℃.

Study for Heat Treatment Optimization of Titanium Hollow Casted Billet (타이타늄 중공마더빌렛 주조재의 열처리공정 최적화 연구)

  • Youn, Chang-Suk;Park, Yang-Kyun;Lee, Hyung-Wook;Lee, Dong-Geun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.2
    • /
    • pp.68-73
    • /
    • 2019
  • ${\alpha}$-titanium alloy has a relatively low heat treatment characteristic and it is mainly subjected to heat treatment for residual stress, recovery or dynamic recrystallization. In this study, commercially pure titanium hollow castings was fabricated by gravity casting. Heat treatments were carried out at $750^{\circ}C$, $850^{\circ}C$ and $950^{\circ}C$ to investigate the effect of post-heat treatment on microstructure and mechanical properties. Beta-transus temperature ($T_{\beta}$) was about $913^{\circ}C$, and equiaxed microstructure was shown at temperature below $T_{\beta}$ and lath-type microstructure at temperature above $T_{\beta}$. Microstructure and mechanical properties did not show any significant difference in the direction of solidification for titanium hollow billet, so it can be seen that it was a well-made material for extrusion process. The optimum heat treatment condition of hollow billet castings for the seamless tube production was $850^{\circ}C$, 4 hr, FC, indicating a combination of equiaxed microstructure and appropriate mechanical properties.

A study on the Al cementation and formation of corrosion-resisting, hardening layer on the steel surface by the arc spray method (아크 용사법에 의한 강재표면에의 Aluminum침수 및 내식, 경화성 피막형성에 관한 연구)

  • 김영식;배차헌;오재환;문경만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.64-77
    • /
    • 1989
  • In this study, the experiments were carried out for the purpose of establishment of aluminium cementation to steel surface by diffusible heat treatment after making the coated film onto the substrate by arc spray method. Also, the microstructure and mechanical properties of the cementation layer produced by this study were inspected for various heat treatment and spraying conditions. Main results obtained are as follow ; 1. The coating film characteristics which have excellent errosion-resistance, high temperature oxidation-resistance are obtained by aluminium penetration heat treatment after making the sprayed aluminum coating film onto the steel substrate. 2. Aluminium diffusion penetration takes place at higher temperature than 660.deg.C, and the more heat treatment time and the higher heat treatment temperature adopted, the deeper diffusion layer obtained. 3. Insert gas arc spraying using argon gas as the carrier gas higher improvement of mechanical property than that of compressed air environment. 4. The coating film characteristics appeared to be improvement of adhesive property, porosity plugging effect by heat treatment in air environment.

  • PDF

Effect of Post Heat Treatment on Bonding Interfaces in Ti/STS409L/Ti Cold Rolled Clad Materials (Ti/STS409L/Ti 냉연 클래드재의 접합계면특성에 미치는 후열처리의 영향)

  • Bae, D.S.;Kim, W.J.;Eom, S.C.;Park, J.H.;Lee, S.P.;Kim, M.J.;Kang, C.Y.
    • Transactions of Materials Processing
    • /
    • v.20 no.2
    • /
    • pp.140-145
    • /
    • 2011
  • The aim of the present study is to derive optimized post heat treatment temperatures to get a proper formability for Ti/STS409L/Ti clad materials. These clad materials were fabricated by cold rolling followed by a post heat treatment process for 10 minutes at temperatures ranging from $500^{\circ}C$ to $850^{\circ}C$. The microstructure of the interface was observed using a Scanning Electron Microscope(SEM) and an Energy Dispersive X-ray Analyser(EDX) in order to investigate the effects of post heat treatment on the bonding properties of the Ti/STS409L/Ti clad materials. Diffusion bonding was observed at the interfaces with a diffusion layer thickness increasing with the post heat treatment temperature. The diffusion layer was composed of a type of(${\varepsilon}+{\zeta}$) intermetallic compound containing additional elements, namely, Fe, Ti and Ni. The micro Knoop hardness of the Ti/STS409L interfaces was found to increase with heat treatment up to $800^{\circ}C$ and then decrease for temperatures rising up to $850^{\circ}C$. The tensile strength was shown to decrease for heat treatment temperature increasing to $750^{\circ}C$ and then increase rapidly for temperature rising up to $850^{\circ}C$. A post heat treatment temperature range of $700{\sim}750^{\circ}C$ was found to optimize the formability of Ti/STS409L/Ti clad materials.

A Study on Electromagnetic Wave Absorbing Properties of $Ni_{0.6}-A_{0.1}-Zn_{0.3}{\cdot}Fe_2O_4$ Ferrite-Rubber Composite by Heat-Treatment Temperature of Ferrite (전파흡수체용 $Ni_{0.6}-A_{0.1}-Zn_{0.3}{\cdot}Fe_2O_4$의 열처리 온도에 따른 Ferrite-Rubber Composite의 전파흡수특성)

  • Park, Youn-Joon;SaGong, Geon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.155-161
    • /
    • 2000
  • In this paper, we studied the relation between heat-treatment temperature of ferrite and electromagnetic wave absorbing properties of ferrite-rubber composite. The heat-treatment temperatures of ferrite are 1200 and $1300^{\circ}C$, 2 hr. As s result. it has been shown that the optimum heat-treatment temperature of ferrite for electromagnetic wave absorber are related to the chemical composition. And, we can control electromagnetic wave absorbing properties of ferrite-rubber composite by the control of heat-treatment temperature of ferrite.

  • PDF

Effect of Cooling Water Temperature on Heat Transfer Characteristics of Water Impinging Jet (냉각수 온도에 따른 수분류 충돌제트의 열전달 특성 연구)

  • Lee, Jungho;Yu, Cheong-Hwan;Do, Kyu Hyung
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.5
    • /
    • pp.249-256
    • /
    • 2010
  • Water jet impingement cooling has been widely used in a various engineering applications; especially in cooling of hot steel plate of steelmaking processes and heat treatment in hot metals as an effective method of removing high heat flux. The effects of cooling water temperature on water jet impingement cooling are primarily investigated for hot steel plate cooling applications in this study. The local heat flux measurements are introduced by a novel experimental technique that has a function of high-temperature heat flux gauge in which test block assemblies are used to measure the heat flux distribution during water jet impingement cooling. The experiments are performed at fixed flow rate and fixed nozzle-to-target spacing. The results show that effects of cooling water temperature on the characteristics of jet impingement heat transfer are presented for five different water temperatures ranged from 5 to $45^{\circ}C$. The local heat flux curves and heat transfer coefficients are also provided with respect to different boiling regimes.

The Effect of Soil Warming on the Greenhouse Heating Load (지중가온이 온실의 난방부하에 미치는 영향)

  • Nam, Sang-Woon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.5
    • /
    • pp.51-60
    • /
    • 2006
  • In order to examine the heat transfer characteristic of a soil warming system and effects of soil warming on the greenhouse heating load, control experiments were performed in two greenhouses covered with double polyethylene film. One treated the soil warming with an electric heat wire and the other treated a control. Inside and outside air temperature, soil temperature and heat flux, and heating energy consumption were measured under the set point of heating temperature of $5,\;10,\;15,\;and\;20^{\circ}C$, respectively. Soil temperatures in a soil warming treatment were observed $4.1\;to\;4.9^{\circ}C$ higher than a control. Heating energy consumptions decreased by 14.6 to 30.8% in a soil warming treatment. As the set point of heating temperature became lower, the rate of decrease in the heating energy consumptions increased. The percentage of soil heat flux in total heating load was -49.4 to 24.4% and as the set point of heating temperature became higher, the percentage increased. When the set point of heating temperature was low in a soil warming treatment, the soil heat flux load was minus value and it had an effect on reducing the heating load. Soil heat flux loads showed in proportion to the air temperature difference between the inside and outside of greenhouse but they showed big difference according to the soil warming treatment. So new model for estimation of the soil heat flux load should be introduced. Convective heat transfer coefficients were in proportion to the 1/3 power of temperature difference between the soil surface and the inside air. They were $3.41\;to\;12.42\;W/m^{2}^{\circ}C$ in their temperature difference of $0\;to\;10^{\circ}C$. Radiative heat loss from soil surface in greenhouse was about 66 to 130% of total heating load. To cut the radiation loss by the use of thermal curtains must be able to contribute for the energy saving in greenhouse.

Growth of Intermetallic Compounds by Heat Treatment at Interface of Friction Welded Al-Cu System (Cu-Al 마찰용접 접합부 계면에서 열처리에 따른 금속간화합물 성장)

  • Kim, Ki-Young;Choi, In-Chul;ITO, Kazuhiro;Oh, Myung-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.2
    • /
    • pp.79-85
    • /
    • 2019
  • To investigate the influence of heat treatment on the growth intermetallic compounds (IMCs) at the joint interface of friction-welded Cu-Al, several heat treatments are performed at three different temperature with different times. The experiments reveal three different IMCs layers which are significantly influenced by atomic diffusion of Cu and Al with heat treatment conditions. Since the formation of these IMCs layers can affect mechanical properties of friction-welded Cu-Al interfaces, the relationship between the microstructure of IMCs layers and the tensile strength is analyzed according to heat treatment temperature and times.