• 제목/요약/키워드: heat-transfer simulation

검색결과 948건 처리시간 0.038초

표면 열전달율의 복사.대류성분 분리와 비정상 열부하 계산에 관한 연구 (A Study on the Radiation and Convection Component Separated from Surface Combined Heat Transfer Coefficient on Dynamic Heat Load Simulation)

  • 김영탁;최창호
    • 한국태양에너지학회 논문집
    • /
    • 제25권3호
    • /
    • pp.1-9
    • /
    • 2005
  • The purpose of this paper was to analyze the influence of radiation and convection component separated from surface heat combined transfer coefficient on dynamic Heat load simulation. In general, it was not considered the mutual radiation of walls that heat load simulation calculated by surface combined heat transfer coefficient. In order to solve this problem, we had developed new simulation program to calculate radiation heat transfer and convection heat transfer respectively, and verified the influence of radiation component with this new program, in indoor heat transfer process.

Heat transfer and flow characteristics of a cooling thimble in a molten salt reactor residual heat removal system

  • Yang, Zonghao;Meng, Zhaoming;Yan, Changqi;Chen, Kailun
    • Nuclear Engineering and Technology
    • /
    • 제49권8호
    • /
    • pp.1617-1628
    • /
    • 2017
  • In the passive residual heat removal system of a molten salt reactor, one of the residual heat removal methods is to use the thimble-type heat transfer elements of the drain salt tank to remove the residual heat of fuel salts. An experimental loop is designed and built with a single heat transfer element to analyze the heat transfer and flow characteristics. In this research, the influence of the size of a three-layer thimble-type heat transfer element on the heat transfer rate is analyzed. Two methods are used to obtain the heat transfer rate, and a difference of results between methods is approximately 5%. The gas gap width between the thimble and the bayonet has a large effect on the heat transfer rate. As the gas gap width increases from 1.0 mm to 11.0 mm, the heat transfer rate decreases from 5.2 kW to 1.6 kW. In addition, a natural circulation startup process is described in this paper. Finally, flashing natural circulation instability has been observed in this thimble-type heat transfer element.

자동차 공조용 응축기의 열전달특성에 관한 수치적 연구 (Numerical study on the heat transfer characteristics of the condenser for the car air-conditioners)

  • 배성열;정백영;김일겸;박상록;임장순
    • 설비공학논문집
    • /
    • 제10권3호
    • /
    • pp.315-323
    • /
    • 1998
  • This paper contains a verification of simulation program to predict the capacity of a condenser used in car air-conditioners. Verification of simulation program is carried out with the comparison error between experiment and simulation bounds within 3.5%. The present investigation shows the results for heat transfer rates of condenser under different operating conditions, such as velocity and degree of superheat. The range of front velocity of air is 1∼5m/s. As the front velocity is increased, the heat transfer rate of condenser is largely increased at a low velocity range. In a meanwhile, heat transfer rate of condenser is almost constant in a range of velocity over 3m/s. As for the effect of inlet pressure of refrigerant on the heat transfer rate, we obtained the similar trend of heat transfer rates as like varying the front velocity, Also we have calculated the heat transfer rates with varying inlet superheats of refrigerant, the larger the superheat is, the more heat transfer rate is obtained.

  • PDF

요철이 설치된 회전하는 채널 내부의 유동 및 열전달의 큰에디모사 (Large Eddy Simulation of Flow and Heat Transfer in a Rotating Ribbed Channel)

  • 안준;최해천;이준식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.193-198
    • /
    • 2003
  • A gas turbine blade has an internal cooling passage equipped with ribs, which can be modeled as a ribbed channel. We have studied a flow inside a ribbed channel using large eddy simulaton (LES) with a dynamic subgrid-scale model. The simulation results are compared with the experimental ones. The turbulence intensity and local heat transfer near the rib have not been well captured by the conventional Reynolds averaged Navier-Stokes simulation (RANS). However, these variables obtained by the present LES agree well with those from experiments. From the instantaneous velocity and temperature fields, we explain the mechanisms responsible for the local peaks in the heat transfer distribution along the channel wall. We have also investigated the effect of rotation on the flow and heat transfer in the ribbed channel.

  • PDF

불포화 지반 조건을 고려한 파일 매입형 열교환기의 수치해석 (Numerical Simulation of Ground Heat Exchanger Embedded Pile Considering Unsaturated Soil Condition)

  • 최정찬;이승래
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.213-220
    • /
    • 2010
  • This study presents a numerical simulation model of vertical ground heat exchangers, considering unsaturated hydro static ground conditions induced by the ground water table fluctuation. Heat transfer in ground and grout is modeled by a 3-D FEM transient conductive heat transfer model, where heat transfer between circulating fluid and heat exchanging pipe is treated as 1-D quasi steady state forced convective elements. To take into account the unsaturated ground condition, soil thermal conductivity and heat capacity which are dependent on the matric suction are applied to ground elements. Parametric studies considering various ground water table conditions are conducted to investigate the influence of unsaturated hydro static ground condition on the mean heat exchange rate of ground heat exchanger. Simulation results considering water table fluctuation show 60~100% of mean heat exchange rate for a saturated soil condition and 125~208% of that for a dry soil condition. Thus consideration of unsaturated soil condition is substantially recommended for more accurate design and performance evaluation for ground heat exchangers.

  • PDF

미시적/준미시적 방법을 이용한 자동차용 열교환기 해석기법 (A Numerical Process for the Underhood Thermal Management with the Microscopic and Semi-microscopic Heat Transfer Method)

  • 이상혁;김주한;이나리;허남건
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.75-79
    • /
    • 2008
  • In this study, the numerical process for analyzing the automotive louver fin heat exchanger was developed with a 3D microscopic and semi-microscopic analysis. In the microscopic analysis, the simulation with the detailed meshes was performed for obtaining the characteristics of the heat exchanger. From this simulation, the numerical correlations of the heat transfer and flow friction were obtained. In the semi-microscopic analysis, the Semi-microscopic Heat Exchanger (SHE) method, which is characterized by a conjugate heat transfer and porous media analysis was used with the numerical correlation from the microscopic analysis. This analysis predicted the flow and heat transfer characteristics of the louver fin heat exchanger in the wind tunnel and vehicle. In the design of the louver fin heat exchanger, this numerical process can predict the performance and characteristic of the louver fin heat exchanger.

  • PDF

마그네슘 합금 판재의 온간성형 해석에서 FLD를 이용한 성형성 평가 (Formability Test in Warm Forming Simulation of Magnesium Alloy Sheet Using FLD)

  • 이명한;김흥규;김헌영;오수익
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.556-559
    • /
    • 2008
  • In this study, the failure in circular cup deep drawing simulation at warm temperature is predicted using forming limit diagram (FLD). The FLD is used in sheet metal forming analysis to determine the criterion for fracture prediction. The simulation with heat transfer of circular cup deep drawing at warm temperature was conducted. To predict the failure, the simulation with heat transfer used FLD at temperature in the vicinity of maximum thinning. The result of the simulation with heat transfer shows that the drawn depth increases with increasing temperature and is in accord with the experimental results above $150^{\circ}C$. The FLD provides a good guide for the failure prediction of warm forming simulation with heat transfer.

  • PDF

Development of the Dynamic Simulation Program of a Multi-Inverter Heat Pump under Frosting Conditions

  • Park Byung-Duck;Lee Joo-Dong;Chung Baik-Young
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제12권3호
    • /
    • pp.113-122
    • /
    • 2004
  • In case of heat exchangers operating under frosting condition, the thermal resistance and the air-side pressure loss increase with a growth of frost layer. In this paper, a transient characteristic prediction model of the heat transfer for a multi-inverter heat pump with frosting on its surface was presented by taking into account the change of the fin efficiency due to the growth of the frost layer. This dynamic simulation program was developed for a basic air conditioning system composed of an evaporator, a condenser, a compressor, a linear electronic expansion valve, and a bypass circuit. The theoretical model was derived from measured heat transfer and mass transfer coefficients. We also considered that the heat transfer performance was only affected by the decrease of wind flow area. The calculated results were compared with the experimental results for frosting conditions.

STUDY OF INTERNAL RECYCLE DISTRIBUTION AND HEAT TRANSFER EFFECT FOR OPTIMAL DESIGN OF DIVIDING WALL DISTILLATION COLUMNS

  • Lee, Ki-Hong;Lee, Moon-Yong;Jeong, Seong-Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2319-2324
    • /
    • 2003
  • This paper addresses the optimal design of dividing wall distillation column which is rapidly applied in a variety of chemical processes over recent several years because of its high energy saving efficiency. A general dividing wall column model which can cope with the heat transfer through the dividing wall is developed using rigorous computer simulation. Based on the simulation model, the effects of the internal recycle flow distribution around the dividing wall and the heat transfer across the dividing wall on overall system performance are investigated. An improved method is suggested to utilize the heat transfer through the wall to optimal column design. The suggested method is compared with the existing method via. simulation study and shows more improved energy saving result. Several control strategies for the divided wall column are tested and the optimal control strategy is propose

  • PDF

분리벽형 증류탑의 최적 설계를 위한 내부 순환량 분포와 전열 특성 연구 (Internal Recycle Distribution and Heat Transfer Effect for Optimal Design of Dividing Wall Distillation Columns)

  • 정성오;이기홍;이문용
    • 제어로봇시스템학회논문지
    • /
    • 제9권3호
    • /
    • pp.236-241
    • /
    • 2003
  • This paper addresses the optimal design of dividing wall distillation column which is rapidly applied in a variety of chemical processes over recent several years because of its high energy saving efficiency. A general dividing wall column model which can cope with the heat transfer through the dividing wall is developed using rigorous computer simulation. Based on the simulation model, the effects of the internal recycle flow distribution around the dividing wall and the heat transfer across the dividing wall on overall system performance are investigated. An improved column design method is suggested to utilize the heat transfer through the wall. The suggested method is compared with the existing method via simulation study in which the proposed design shows improved energy saving result.