• Title/Summary/Keyword: heat-affected zone

Search Result 597, Processing Time 0.024 seconds

An analytical study on the fire characteristics of the small tunnel with large smoke exhaust port (대배기구 배연방식을 적용한 소형차 전용 터널의 화재특성에 관한 해석적 연구)

  • Yoo, Ji-Oh;Kim, Jin-Su;Rhee, Kwan-Seok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.375-388
    • /
    • 2017
  • In order to solve the traffic congest and environmental issues, small-cross section tunnel for small car only is increasing, but there is not standard for installation of disaster prevention facility. In this study, in order to investigate the behavioral characteristics of thermal environment and smoke in a small cross section tunnels with a large port exhaust ventilation system, the A86, the U-Smartway and the Seobu moterawy tunnel, Temperature and CO concentration in case of fire according to cross sectional area, heat release rate and exhaust air flow rate were analyzed by numerical analysis and the results were as follows. As the cross-sectional area of the tunnel decreases, the temperature of the fire zone increases and the rate of temperature rise is not significantly affected by heat release rate. However, there is a difference depending on the change of the exhaust air flow rate. In the case of applying the exhaust air flow rate $Q_3+2.5Ar$ of the large port exhaust ventilation system, the temperature of the fire zone was 7.1 times for A86 ($Ar=25.3m^2$) and 5.4 time for U-smartway ($Ar=37.32m^2$) by Seobu moterway tunnel ($Ar=46.67m^2$). The CO concentration of fire zone also showed the same tendency. The A86 tunnels were 10.7 times and the U-Smartways were 9.5 times more than the Seobu moterway. Therefore, in the case of a small section tunnel, the thermal environment and noxious gas concentration due to the reduction of the cross-sectional area are expected to increase significantly more than the cross-sectional reduction rate.

An Experimental Study on Fatigue Crack Growth Characteristics of Welded High-Strength Steels (용접구조용 고강도강재의 피로균열성장특성에 관한 실험적 연구)

  • Hong, Sung Wook;Kyung, Kab Soo;Nam, Wang Hyun;Jung, Young Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.773-782
    • /
    • 2002
  • In this study, a series of fatigue tests are performed in order to estimate quantitatively the characteristics of fatigue crack growth rate according to the base metal, heat affected zone(HAZ) and weld metal, and the welding method and grade of strength of object steels, and the influence on fatigue crack growth rate according to the direction of welded line for high strength steels of SM570, POSTEN60, and POSTEN80 steels. From the fatigue test results, the retardations of fatigue crack growth rate are remarkable in case that the direction of notch is parallel to welded line than in case that the direction of notch is perpendicular to welded line because of compresive residual stress in weld metal & HAZ. And the characteristics of fatigue crack growth rate according to welding method are that the dispersion of fatigue crack growth rate in case of FCAW method is smaller than that of SAW method. Also, it knows that the fatigue crack growth rate converges in high stress intensity factor range. Meanwhile, fatigue safety is guaranteed sufficiently in the object steels because the fatigue crack growth rate in the range of fatigue crack propagation has a similar tendency to the test results & existing results.

Investigation of Antimicrobial Activity and Stability of Orixa japonica Thunb. Leaf Extract (상산나무 잎 추출물의 항균활성 및 안정성 조사)

  • Choe, Su-Bin;Kang, Sung-Tae
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.39-43
    • /
    • 2014
  • The antimicrobial activity of Orixa japonica Thunb. leaf extract towards 13 microorganism strains was evaluated. Both methanol (MEex) and 70% ethanol extracts showed antimicrobial activity towards Streptococcus mutans, Bacillus cereus, Staphylococcus aureus, and Pseudomonas aeruginosa. MEex showed a higher antimicrobial activity than the 70% ethanol extract. In addition, the dichloromethane fraction (DCMfr) of the MEex also had an antimicrobial effect against the microorganisms examined. The minimum inhibitory concentrations (MICs) towards S. mutans, B. cereus, S. aureus, and P. aeruginosa were 49.22, 24.61, 49.22, and 49.22 mg/mL, respectively. In contrast, the MICs of the DCMfr tpwards S. mutans, B. cereus, S. aureus, and P. aeruginosa were 3.31, 0.21, 1.7, and 1.7 mg/mL, respectively. The MEex antimicrobial activity was not affected by a 3 h exposures to pH in the range of 3-11 or by temperatures were maintained between $80^{\circ}C-100^{\circ}C$ for 6 h. However, the MEex antimicrobial activity decreased at a heat treatment of $121^{\circ}C$ 1 h.

Microstructure and Creep Fracture Characteristics of Dissimilar SMA Welds between Inconel 740H Ni-Based Superalloy and TP316H Austenitic Stainless Steel (Inconel 740H 니켈기 초내열합금과 TP316H 스테인리스강의 이종금속 SMA 용접부의 미세조직과 크리프 파단 특성)

  • Shin, Kyeong-Yong;Lee, Ji-Won;Han, Jung-Min;Lee, Kyong-Woon;Kong, Byeong-Ook;Hong, Hyun-Uk
    • Journal of Welding and Joining
    • /
    • v.34 no.5
    • /
    • pp.33-40
    • /
    • 2016
  • The microstructures and the creep rupture properties of dissimilar welds between the Ni-based superalloy Inconel 740H and the non-stabilized austenitic stainless steel TP316H have been characterized. The welds were produced by shielded metal arc (SMA) welding process with the AWS A5.11 Class ENiCrFe-3 filler metal, commonly known as Inconel 182 superalloy. Postweld heat treatment at $760^{\circ}C$ for 4 hours was conducted to form ${\gamma}^{\prime}$ strengthener in Inconel 740H. The austenitic weld metal produced by Inconel 182 had a dendritic microstructure, and grew epitaxially from the both sides of Inconel 740H and TP316H base metals. Since both Inconel 740H and TP316H did not undergo any solid-state transformation during welding process, there were no heat-affected-zone (HAZ) sub-regions and the coarsoned grains near the weld interface were limited to a narrow region. The hardness of Inconel 182 weld metal was ~220 Hv. The gradual hardness decrease was detected at HAZ of TP316H, and the TP316H base metal displayed the lowest hardness value (~180 Hv) whilst the Inconel 740H showed the highest hardness value (~400 Hv). Fracture after creep occurred at the center of weld metal, regardless of creep condition. It was found that during creep the cracks initiated and propagated along interdendritic regions and grain boundaries at which Laves particles enriched in Nb, Si and Cr were present. The appropriate design of weld metal was discussed to suppress the creep-induced cracking of the present dissimilar weld.

A Study on Fatigue Design Automation of Plug- and Ring-type Gas-welded Joints of STS301L Taking Welded Residual Stress into Account (용접잔류응력을 고려한 STS301L 플러그 및 링 용접부의 피로설계 자동화에 관한 연구)

  • Baek, Seung-Yeb;Yun, Ki-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1137-1143
    • /
    • 2010
  • This paper presents a fatigue design method for plug- and ring-type gas-welded joints, which takes into account the effects of welding residual stress. To develop this method, we simulated the gas-welding process by performing nonlinear finite element analysis (FEA) To validate the FEA results, numerically calculated residual stresses in the gas welds were then compared with experimental results obtained by the hole-drilling method. To evaluate the fatigue strength of plug- and ring-type gas-welded joints influenced by welding residual stresses, the use of stress amplitude $(\sigma_a)_R$, which includes the welding residual stress in gas welds, is proposed $(\sigma_a)_R$ on the basis of a modified Goodman equation that includes the residual stress effects. Using the stress amplitude $(\sigma_a)_R$ at the hot spot point of gas weld, the relations obtained as the fatigue test results for plug and ring type gas welded joints having various dimensions and shapes were systematically rearranged to obtain the $(\sigma_a)_R-N_f$ relationship. It was found that more systematic and accurate evaluation of the fatigue strength of plug- and ring-type gas-welded joints can be achieved by using $(\sigma_a)_R$.

Comparison of clad layer characteristics with overlapping criterion in multi pass laser cladding (멀티패스 레이저 클래딩에 있어서 중첩률의 기준에 따른 클래드 층의 특성 비교)

  • Kim, Jong-Do;Lee, Eun-Jin;Whang, Jun-Gu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.768-773
    • /
    • 2016
  • Engine valve seat and face, which are the important factors affecting engine performance, are required to have wear, heat and corrosion resistance. In order to produce surface layer with these characteristics, PTA(plasma transferred arc) surfacing procedure is generally employed, but problems, such as large HAZ and high dilution etc., frequently occurr. Laser cladding, which overcomes the drawbacks of conventional technologies, can be employed to create a superior clad layer with low dilution, small heat affected zone, and minimal distortion. However, in case cladding is to be applied to a large area, it is necessary to overlap 1 pass clad layer because of limited clad layer width. Two criteria for the overlapping ratio-beam size and clad layer width-have been considered thus far. Upon inspection of multi pass clads, produced by different overlapping criteria, it was observed that the greater the increase in overlapping ratio, the greater was the decrease in clad layer width and increase in clad layer height regardless of the criterion used. However, a multi pass clad overlapped by the beam size criterion demonstrated a higher hardness value than a clad overlapped by the clad layer width owing to decreasing dilution of the substrate. In conclusion, the beam size was defined as the criterion for the overlapping, because the clad layer width increased or decreased depending upon process parameters.

A Study on the Thermal Comfort Zone and Energy Use of Radiant Floor Heating by Residential Style and Clothing Level (생활특성과 착의량에 따른 바닥복사난방 공간의 열쾌적 범위 및 에너지 사용량에 관한 연구)

  • Kim, Sang-Hun;Chung, Kwang-Seop;Kim, Young-Il
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.24-31
    • /
    • 2015
  • The purpose of this study is to provide the thermal comfort range according to the residential style and clothing level at radiant floor heating space, and compare the annual energy consumption and energy cost for each condition. Lower neutral point temperature has been stood for floor sitting style than chair sitting style, which appears that the thermal sensation was affected by local heat transfer between floor surface and the human body. The result of research indicates that neutral point temperature was in inverse proportion with the clothing level. It is interpreted that the increasing of clothing level results decrement of heat loss from human body, and is available to achieve same thermal comfort at lower room temperature. It was analyzed that the floor sitting style is more economical residential style than the chair sitting style, because the energy consumption of the floor sitting style is saved by 6.0% in average to compare with that of the chair sitting style. It is analyzed that energy consumption has been decreased by 13.5% with the clothing level of 1.2 Clo than with that of 1.0 Clo, and decreased by 18.0% than with that of 0.8 Clo, which explains that the energy saving can be achieved with the variation in life habit to increase the clothing level.

Geochemistry of the Heunghae, Pohang Geothermal Fields, Korea (포항 흥해지역 지열대의 지화학)

  • Yun Uk;Cho Byong-Wook
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.6
    • /
    • pp.45-55
    • /
    • 2005
  • The geothermal research has been carried out on the Heunghae, Pohang geothermal area know as having geo-heat-flow area in the Korean peninsula. This study results so far indicate that geothermal water in the area is in peripheral waters of hydrothermal area and is not in equilibrium with the reservoir rock. The average oxygen and hydrogen stable isotope values are as follows: deep groundwater $(average:\;{\delta}^{18}O=-10.1\%_{\circ},\;{\delta}D=-65.8\%_{\circ})$, intermediate groundwater (average: $(average:\;{\delta}^{18}O=-8.9\%_{\circ},\;{\delta}D=-59.6\%_{\circ})$, shallow groundwater $(average:\;{\delta}^{18}O=-8.0\%_{\circ},\;{\delta}D=-53.6\%_{\circ})$, surface water $(average:\;{\delta}^{18}O=-7.9\%_{\circ},\;{\delta}D=-53.3\%_{\circ})$ respectively. Deep groundwaters was originated from a local meteoric water recharged from distant, topographically high mountain region and not affected by the sea water. High temperature zone inferred from water geothermometers is around D-1, D-5, D-6, 1-04 well zones. The estimated enthalpy from Silica-enthalpy mixing model is near 410 kJ/kg, which corresponds to the temperature of $98^{\circ}C$, and in consistent with the result of Na-K and K-Mg geothermometer.

Antimicrobial Activity of Garlic Extracts according to Different Cooking Methods (조리방법을 달리한 마늘 추출물의 항균활성)

  • Kim Yong Doo;Kim Ki Man;Hur Chang Ki;Kim Eun Sun;Cho In Kyung;Kim Kyung Je
    • Food Science and Preservation
    • /
    • v.11 no.3
    • /
    • pp.400-404
    • /
    • 2004
  • This study was conducted to find the antimicrobial activity of garlic extracts by various processing methods(boiled, pan fried, microwave heated, pickled). Ethanol and water extracts from garlic sample were prepared and antimicrobial activities were determined against 10 microoganisms ; food borne pathogens, food poisoning microoganisms, food-related bacteria and yeasts. The ethanol extracts from the fresh and pickled garlic showed antimicrobial activities for test microoganisms, except lactic acid bacteria and yeast. However, the antimicrobial activities were decreased by heat treatment. The minimum inhibitory concentration(MIC) of the fresh garlic extracts was determined to 0.1 mg/mL against an gram positive bacterium and 0.5 mg/mL against an gram negative bacterium. The antimicrobial activities of the ethanol extracts were affected by heating methods and not by pHs.

A Study on Tensile Restraint Crack Critical Stress Characteristcs of Gravity-Wet-Type Underwater Welded Joints (중력식 습식 수중용접부의 인강구속균열 임계응력 특성에 관한 연구)

  • O, Se-Gyu;Gang, Mun-Ho;Han, Sang-Deok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.2
    • /
    • pp.61-65
    • /
    • 1987
  • In this study, the characteristics of TRC (tensile restraint crack) critical stress in the gravity type underwater wet welding process and in the in-air welding have been investigated for Y, y and 45$^{\circ}$r grooves using the KR Grade A-3 steel plates and the E4303 covered electrodes. The following results were obtained: (1) In the TRC tests, the initial critical stress of Y groove is higher than those of the 45$^{\circ}$r single bebel grooves in both in-air and underwater weldings, and the cold fracture sensitivity is higher in the underwater welding than in the in-air welding. (2) The hardness of underwater weld metal is the highest in heat affected zone is about Hk 365 in the in-air weld but Hk 670 in the underwater weld which is higher for cooling speed is more rapid, resulting in the lower critical stress by increase of fracture sensitivity. (3) The diffusible hydrogen quantity for 48 hours is about 18cc/100g-weld-metal in the in-air welding but 48cc/100g-weld-metal in the underwater welding. So that, in the case of underwater welding the diffusible hydrogen penetrates about 3 times more than that in the in-air welding.

  • PDF