• Title/Summary/Keyword: heat-affected zone

Search Result 597, Processing Time 0.025 seconds

A Study on Local Distribution of Fracture Toughness for Welded Joints of Steel Structure (구조강(構造鋼) 용접부(鎔接部)의 국부인성분포(局部靭性分布)에 관한 연구(研究))

  • Chang, Dong Il;Young, Hwan Sun;Kim, Dong Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.3
    • /
    • pp.19-25
    • /
    • 1984
  • In the welded structure, the most dengerous section is welded parts and almost fractures of welded structure occur from welded parts. Accordingly, in other to prevents of fracture, it is important seeking the fracture behavior of welded parts. In this study as basic investigation of fracture behavior of welded parts, it is investigated that local distribution of fracture toughness and effect of multipass electrode welding, also effect of release of residual stress were investigated, as the subjected. material, the used steel having fatigue history and unused steel were selected. As the result of this study, it is dear that the base metal of unused steel and heat affected zone and weld metal are different each other in fracture toughness, and it seems clear that the weld metal may will become source of fracture because of it having the most low fracture toughness. Especially, in the case of crack occur in the used steel, it will be the most brittle section in the structure because of it having low fracture toughness then weld metal. It affirmation that, if welded parts has not flaw, the multi pass electrode welding effective to improve of fracture toughness, also release of residual stress is none effective to improve of fracture toughness in this study.

  • PDF

A Study on the Variation of Physical Properties of Line-heated for Type-B LNG Fuel Tank with 9% Nickel Steel Plate (9% Nickel강이 적용된 Type-B LNG 연료탱크 선상가열의 물성 변화에 관한 연구)

  • Choi, Kyung-Shin;Lee, Ji-Han;Hong, Ji-Ung;Chung, Won-Jee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.7
    • /
    • pp.89-97
    • /
    • 2020
  • Container vessels continue to grow in size, led by global shipowner. Large ships can be loaded more cargo at a time, reducing the cost of transportation per teu. this eventually leads to economies of sale, in which the production cost per unit decreases with increasing output. in accordance with the 70th Convention of the Marine Environment Protection Committee of the International Maritime Organization, as of January 1, 2020, MARPOL Annex VI Regulation 14.1.3 will be effective. All vessels must be meet these criteria to reduce Sox emissions and reduce NOx emissions by reducing the content of manned sulfur oxides from 3.5% to less than 0.5%, otherwise IACS Member States Entry to the port is denied. in order to do that need to LNG storage tank. in this study characteristic of the material after line heating (600℃,700℃,800℃,900℃) of 9% Ni steel used in the manufacture of LNG fuel tank of ship were verified using by mechanical test. In the heating method by line heating. The initial properties of steel are changed by variables such as temperature, time, speed. The experimental data of line heating presented in this paper confirmed that the initial change of 9% Ni steel could be minimized.

Experimental Investigation of Fatigue Crack Growth Behavior in Friction Stir Welded 7075-T651 Aluminum Alloy Joints under Constant Stress Intensity Factor Range Control Testing (For LT Orientation Specimen) (일정 응력확대계수범위 제어 시험하의 마찰교반용접된 7075-T651 알루미늄 합금 용접부의 피로균열전파 거동의 실험적 고찰 (LT 방향의 시험편에 대하여))

  • Jeong, Yeui Han;Kim, Seon Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.775-782
    • /
    • 2013
  • In this study, as a series of studies aimed at investigating the spatial randomness of fatigue crack growth for friction stir welded (FSWed) 7075-T651 aluminum alloy joints, the fatigue crack growth behavior of FSWed 7075-T651 aluminum alloy joints was investigated for LT orientation specimens. Fatigue crack growth tests were conducted under constant stress intensity factor range (SIFR) control for 5 specimens of the FSWed 7075-T651 aluminum alloy, including base metal (BM), heat affected zone (HAZ), and weld metal (WM) specimens. The mean fatigue crack growth rate of WM specimens was found to be the highest, whereas that of HAZ and WM specimens was the lowest. Furthermore, the variability of fatigue crack growth rate was found to be the highest in WM specimens and lowest in BM specimens.

A study on the optimization of manufacturing processes of double wall bellows for dual fuel engine II - Optimization of welding process - (Dual Fuel 엔진용 이중관 벨로우즈 제작 공정의 최적화에 관한 연구 II - 용접공정의 최적화 -)

  • Kim, Pyung-Su;Kim, Jong-Do;Song, Moo-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.504-509
    • /
    • 2016
  • Production processes of double wall bellows can be roughly categorized into two steps. In the first step, inner and outer bellows are made of STS316L in austenite stainless steel due to their excellent formability and corrosion resistance. In the second step, the double wall bellows are manufactured using the welding method with both the inner and outer bellows. The microstructure and defects of each weldment are observed to ensure the reliability of bellows since weldment is a highly vulnerable part, which can crack and fracture when bellows are formed or used. In this study, optimum welding conditions were derived from the analysis of microstructure and inspection of weldment of bellows that were produced using various welding procedure. Moreover, the mechanical properties were evaluated through hardness measurement of substrate, weldment and the heat-affected zone.

Numerical Analysis of the Electro-discharge Machining Process of a Conductive Anisotropic Composite (전기전도성 이방성 복합재료 방전가공의 수치 해석)

  • Ahn, Young-Cheol;Chun, Kap-Jae
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.72-78
    • /
    • 2009
  • For the electro-discharge machining of an electro-conductive anisotropic composite, an unsteady state formulation was established and solved by Galerkin's finite element method. The distribution of temperature on work piece, the shape of the crater and the material removal rate were obtained in terms of the process parameters. The $12{\times}12$ irregular mesh that was chosen as the optimum in the previous analysis was used for computational accuracy and efficiency. A material having the physical properties of alumina/titanium carbide composite was selected and an electricity with power of 51.4 V and current of 7 A was applied, assuming the removal efficiency of 10 % and the thermal anisotropic factors of 2 and 3. As the spark was initiated the workpiece immediately started to melt and the heat affected zone was formed. The moving boundary of the crater was also identified with time. When the radial and axial conductivities were increased separately, the temperature distribution and the shape of the crater were shifted in the radial and axial directions, respectively. The material removal rate was found to be higher when the conductivity was increased in the radial direction rather than in the axial direction.

Analysis of Microstructure for Resistance Spot Welded TRIP Steels using Atomic Force Microscope (원자력간 현미경을 이용한 TRIP강 저항 점용접부의 미세조직 분석에 관한 연구)

  • Choi, Chul Young;Ji, ChangWook;Nam, Dae-Geun;Jang, Jaeho;Kim, Soon Kook;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.31 no.1
    • /
    • pp.43-50
    • /
    • 2013
  • The spot welds of Transformation Induced Plasticity (TRIP) steels are prone to interfacial failure and narrow welding current range. Hard microstructures in weld metal and heat affected zone arenormally considered as one of the main reason to accelerate the interfacial failure mode. There fore, detailed observation of weld microstructure for TRIP steels should be made to ensure better weld quality. However, it is difficult to characterize the microstructure, which has similar color, size, and shape using the optical or electron microscopy. The atomic force microscope (AFM) can help to analyze microstructure by using different energy levels for different surface roughness. In this study, the microstructures of resistance spot welds for AHSS are analyzed by using AFM with measuring the differences in average surface roughness. It has been possible to identify the different phases and their topographic characteristics and to study their morphology using atomic force microscopy in resistance spot weld TRIP steels. The systematic topographic study for each region of weldments confirmed the presence of different microstructures with height of 350nm for martensite, 250nm for bainite, and 150nm for ferrite, respectively.

Measurement of Dynamic Elastic Constants of RPV Steel Weld due to Localized Microstructural Variation (원자로 용접부의 국부적 미세조직 변화에 따른 동적탄성계수 측정)

  • Cheong, Yong-Moo;Kim, Joo-Hag;Hong, Jun-Hwa;Jung, Hyun-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.5
    • /
    • pp.390-396
    • /
    • 2000
  • The dynamic elastic constants of the simulated weld HAZ (heat-affected zone) of SA 508 Class 3 reactor pressure vessel (RPV) steel were investigated by resonant ultrasound spectroscopy (RUS). The resonance frequencies of rectangular parallelepiped samples woe calculated from the initial estimates of elastic stiffness $c_{11},\;c_{12}\;and\;c_{44}$ with an assumption of isotropic property, dimension and density. Through the comparison of calculated resonant frequencies with the measured resonant frequencies by RUS, very accurate elastic constants of SA 508 Class 3 steel were determined by iteration and convergence processes. Clear differences of Youngs modulus and shear modulus were shown from samples with different thermal cycles and microstructures. Youngs modulus and shear modulus of samples with fine-grained bainite were higher than those with coarse-grained tempered martensite. This tendency was confirmed from other results such as micro-hardness test.

  • PDF

A Study on Fatigue Fracture Behavior of Laser Beam Welding and Steel with Different Materials ($CO_2$ 레이저 용접 이종재료강의 피로파괴거동에 관한 연구)

  • Han, M.S.;Suh, J.;Lee, J.H.;Kim, J.O.;Jeon, S.M.
    • Laser Solutions
    • /
    • v.9 no.2
    • /
    • pp.1-9
    • /
    • 2006
  • In this paper, we investigated the characteristics of fatigue fracture on TB(Tailored Blank) weldment by comparing the fatigue crack propagation characteristics of base metal with those of TB welded sheet used for vehicle body panels. We also investigated the influence of center crack on the fatigue characteristic of laser weld sheet of same thickness. We conducted an experiment on fatigue crack propagation on the base metal specimen of 1.2mm thickness of cold-rolled metal sheet(SPCSD) and 2.0mm thickness of hot-rolled metal sheet(SAPH440) and 1.2+2.0mm TB specimen. We also made an experiment on fatigue crack propagation on 2.0+2.0mm and 1.2+1.2mm thickness TB specimen which had center crack. The characteristics of fatigue crack growth on the base metal were different from those on 1.2+2.0mm thickness TB specimen. The fatigue crack growth rate of the TB welded specimens is slower in low stress intensity factor range $({\Delta}K)$ region and faster in high${\Delta}K$ region than that of the base metal specimens. The slant crack angle slightly influenced the crack propagation of the TB specimen of 2.0+2.0mm thinkness.

  • PDF

Correlation between Microstructure and Mechanical Properties of Base Metal and HAZ of 500 MPa Steel Plates for Offshore Platforms (해양플랜트용 500 MPa급 후판강의 모재 및 HAZ의 미세조직과 기계적 특성의 상관관계)

  • Park, Jiwon;Cho, Sung Kyu;Cho, Young Wook;Shin, Gunchul;Kwon, Yongjai;Lee, Jung Gu;Shin, Sang Yong
    • Korean Journal of Materials Research
    • /
    • v.30 no.3
    • /
    • pp.123-130
    • /
    • 2020
  • In this study, two types of thick steel plates are prepared by controlling carbon equivalent and nickel content, and their microstructures are analyzed. Tensile tests, Vickers hardness tests, and Charpy impact tests are conducted to investigate the correlation between microstructure and mechanical properties of the steels. The H steel, which has high carbon equivalent and nickel content, has lower volume fraction of granular bainite (GB) and smaller GB packet size than those of L steel, which has low carbon equivalent and nickel content. However, the volume fraction of secondary phases is higher in the H steel than in the L steel. As a result, the strength of the L steel is higher than that of the H steel, while the Charpy absorbed energy at -40 ℃ is higher than that of the L steel. The heat affected zone (HAZ) simulated H-H specimen has higher volume fraction of acicular ferrite (AF) and lower volume fraction of GB than the HAZ simulated L-H specimen. In addition, the grain size of AF and the packet sizes of GB and BF are smaller in the H-H specimen than in the L-H specimen. For this reason, the Charpy absorbed energy at -20 ℃ is higher for the H-H specimen than for the L-H specimen.

A Study on the Mechanical Properties as a Result of Friction Welding With SKH55 and SM45C (고속도강(SKH55)과 기계구조용 탄소강(SM45C)의 마찰용접특성에 관한 연구)

  • Choi, Su-Hyun;Min, Byung-Hoon;Kim, Noh-Kyung;Lim, Hyung-Taek;Min, Taeg-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.65-70
    • /
    • 2008
  • This study deals with the friction welding of SKH55 and SM45C; The friction time was variable conditions under the conditions of spindle revolution 2,000rpm, friction pressure of 190MPa, upset pressure of 270MPa and upset time of 2.0 seconds. Under these conditions, the microstructure of weld interface, tensile fracture surface and mechanical tests were studied, and so the results were as follows. 1. When the friction time is 1.0 seconds, the tensile strength of friction welds was 926MPa, which is around as much as 84% of the tensile strength of base metal(SKH55), the bending strength of friction welds was 1,542MPa, which is around as much as 80% of the bending strength of base metal(SKH55), the shear strength of friction welds was 519MPa, which is around as much as 70% of the shear strength of base metal(SKH55). 2 According to the hardness test, the hardness distribution of the weld interface was formed from 964Hv to 254Hv. HAZ(Heat Affected Zone) was formed from the weld interface to 1.5mm of SKH55 and 2mm of SM45C.