• 제목/요약/키워드: heat treatment of $WO_3-TiH_2$ powders

검색결과 2건 처리시간 0.02초

열처리 온도 및 분위기가 TiH2-WO3 혼합분말의 미세조직에 미치는 영향 (Effect of Heat Treatment Temperature and Atmosphere on the Microstructure of TiH2-WO3 Powder Mixtures)

  • 이한얼;김연수;오승탁
    • 한국분말재료학회지
    • /
    • 제24권1호
    • /
    • pp.41-45
    • /
    • 2017
  • The effects of the heat treatment temperature and of the atmosphere on the dehydrogenation and hydrogen reduction of ball-milled $TiH_2-WO_3$ powder mixtures are investigated for the synthesis of Ti-W powders with controlled microstructure. Homogeneously mixed powders with refined $TiH_2$ particles are successfully prepared by ball milling for 24h. X-ray diffraction (XRD) analyses show that the powder mixture heat-treated in Ar atmosphere is composed of Ti, $Ti_2O$, and W phases, regardless of the heat treatment temperature. However, XRD results for the powder mixture, heat-treated at $600^{\circ}C$ in a hydrogen atmosphere, show $TiH_2$ and TiH peaks as well as reaction phase peaks of Ti oxides and W, while the powder mixture heat-treated at $900^{\circ}C$ exhibits only XRD peaks attributed to Ti oxides and W. The formation behavior of the reaction phases that are dependent on the heat treatment temperature and on the atmosphere is explained by thermodynamic considerations for the dehydrogenation reaction of $TiH_2$, the hydrogen reduction of $WO_3$ and the partial oxidation of dehydrogenated Ti.

WO3-TiH2 혼합분말의 반응처리 및 방전 플라스마 소결에 의한 W-Ti 치밀체 제조 (Fabrication of Densified W-Ti by Reaction Treatment and Spark Plasma Sintering of WO3-TiH2 Powder Mixtures)

  • 강현지;김헌주;한주연;이윤주;정영근;오승탁
    • 한국재료학회지
    • /
    • 제28권9호
    • /
    • pp.511-515
    • /
    • 2018
  • W-10 wt% Ti alloys that have a homogeneous microstructure are prepared by thermal decomposition of $WO_3-TiH_2$ powder mixtures and spark plasma sintering. The reduction and dehydrogenation behavior of $WO_3$ and $TiH_2$ are analyzed by temperature programmed reduction and a thermogravimetric method, respectively. The X-ray diffraction analysis of the powder mixture, heat-treated in an argon atmosphere, shows W- oxides and $TiO_2$ peaks. Conversely, the powder mixtures heated in a hydrogen atmosphere are composed of W, $WO_2$ and $TiO_2$ phases at $600^{\circ}C$ and W and W-rich ${\beta}$ phases at $800^{\circ}C$. The densified specimen by spark plasma sintering at $1500^{\circ}C$ in a vacuum using hydrogen-reduced $WO_3-TiH_2$ powder mixtures shows a Vickers hardness value of 4.6 GPa and a homogeneous microstructure with pure W, ${\beta}$ and Ti phases. The phase evolution dependent on the atmosphere and temperature is explained by the thermal decomposition and reaction behavior of $WO_3$ and $TiH_2$.