• Title/Summary/Keyword: heat transfer printing

Search Result 26, Processing Time 0.026 seconds

Improvement of the heat transfer ability on the heat transfer printing (열 전사날염의 열전사성 향상에 관한 연구)

  • Lee, Mun-Soo;Song, Kyung-Hun
    • The Journal of Natural Sciences
    • /
    • v.11 no.1
    • /
    • pp.151-157
    • /
    • 1999
  • The study was investigated the improved printing effect of heat transfer ability for the cotton fabric treated with disperse dyes. Some important factors were studied to determine the most optimal conditions such as concentration of dye, treated time and temperature, after treatment and before treatment using swelling agent, and molecular weight of dye. The fastness to laundering and light for heat transfer printing was measured.The optimal conditions of heat transfer printing for cotton fabric treated with disperse dye were concentration of 5% owf, treated temperature of $200^{\circ}C$, treated time of 3 minute. The diffusion of disperse dyes inside cotton fabric was accelerated as a result of swelling agent such as glycerin, ethylene glycol, tetramethylene glycol, propylene glycol using in this study. The effects of heat transfer printing were increased that the increasement of before treatment time for swelling agent, decrease of molecular weight of dye.

  • PDF

Develop ECO-FREE high concentration Full black dye using transfer printing and application technology (전사날염용 ECO-FREE 고농도 Full Black 염료개발과 응용기술)

  • Cho, Ho-Hyun;Chung, Myung-Hee;Lee, A-Ram
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.19 no.2
    • /
    • pp.39-48
    • /
    • 2017
  • Transfer printing is a method to combine printing and dyeing technology by the use of sublimation. It is an environmentally-friendly printing method that saves costs, reduces the production processes by the omission of the washing process, and saves time by maintaining quality. Due to the development of transfer printing, a high value added printing technology is available now but color fastness to sublimation of the printing products is still low since there are few dyes that have an affinity to the fabrics and the application technology is still inadequate. Specially, in case of high concentration black dyes, eco-label type black dyes, which is a substitution for general dispersal dyes, have been developed while general dispersal black dyes are still used, creating issues such as color differences on the surface and back side of the fabrics and contamination by friction after transfer printing. There are also some restricted substances such as allergens. To address these issues, high concentration black dyes and application technology that are environmentally-friendly and that have over 16 K/S through the use of single dyes with excellent color fastness, fixation ability, and similar melting temperature were developed for this study.

  • PDF

The Effects of the Heat-set web Ink Emulsification on Printability (Heat-set 윤전 잉크의 유화가 인쇄 적성에 미치는 영향)

  • Ha, Young-Baeck;Choi, Jae-Hyuk;Lee, Won-Jae;Oh, Sung-Sang
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.28 no.2
    • /
    • pp.31-44
    • /
    • 2010
  • Ever since the introduction of offset lithography, an operator have looked for ways to improve the process by reducing need for dampening solution. Lithography like off-set printing is processed using the repellent properties between water and oil, so all inks for lithography printing must work with dampening solution. The dampening solution may cause the emulsification of ink by the printing pressure in the printing nip. Emulsified ink changed viscosity, tack and causes problems such as bad transfer, uniform density and printed mottle. For a high quality web printing, we studied the effect of emulsified heat-set web inks on the printability, such as amount of ink transfer, printed density and uniformity. For this study, we were carried out by using IGT printability tester C1. For determination of ink properties using the spread meter and Thwing Albert Ink-o-meter, and using the densitometer and image analysis for printed quality determination. The experimental results of this study, we look forward to can be used as the basis for improve of the web print quality.

A study of the color reproducibility and color fastness of digital textile printing for nylon sublimation transfer (나일론 승화전사 디지털 프린팅의 컬러 재현성 및 견뢰도에 관한 연구)

  • Choi, Gyung-Me;Kim, Ki-Hoon
    • The Research Journal of the Costume Culture
    • /
    • v.26 no.5
    • /
    • pp.754-763
    • /
    • 2018
  • This study examined the color reproducibility and color fastness of digital textile printing for nylon sublimation transfer. After measuring the temperature and time suited to nylon sublimation transfer, the researchers conducted various tests for comparison and analysis including polyester transfer paper on polyester fabric to check dyeing characteristics, color change, sharpness, and the rubbing fastness of the dyeing samples for nylon sublimation transfer. These tests produced the following results. At $185^{\circ}C$ and $187^{\circ}C$, the sublimation transfer dyeing characteristics of nylon were similar to those of polyester and the researchers even observed superior color development in some colors; at a low temperature of $180^{\circ}C$, the sample that was worked on had the lowest level of color development. The examination of color difference (${\Delta}E$), which compared $L^*a^*b^*$ values, showed that the ${\Delta}E$ value of magenta was 10.34, that of yellow was 24.70, and that of black was 15.28. These results highlight the important role of heat treatment temperature and time on color development in nylon sublimation transfer. Concerning sharpness, the samples subjected to higher temperature heat treatment exhibited fewer color spreading phenomena around lines. Thus, dyeing properties and fastness can be enhanced by elongating time at low temperatures and shortening time at high temperatures; however, considering production time constraints as well as the need to produce industrially marketable quantities, the findings of this study suggest that the heat treatment temperature most suitable for nylon sublimation transfer is $187^{\circ}C$ for a duration of 50 seconds.

Heat Transfer Depending on 3D Printing Material and Shape for Protector Development (3D 프린팅 보호대 개발을 위한 재료와 구조에 따른 열전달 평가)

  • Okkyung Lee;Soyoung Kim;Yejin Lee;Heeran Lee
    • Fashion & Textile Research Journal
    • /
    • v.25 no.4
    • /
    • pp.497-507
    • /
    • 2023
  • This study measured the effect 3D printing products comprised of different materials and shapes on heat transfer in clothing to derive fundamental data on thermal comfort among clothing comfort. The variables were three types of material (EVA foam, TPU-10%, TPU-10%+EVA), two types of shape (without holes, with holes), and two types of covers(without cover, with cover). All samples (12 types) prepared by combining these variables were placed on the hot plate set at 36℃, and the surface temperature was measured at three points for 10 minutes. The surface temperature change was dependent on the material, shape, and cover of the sample. The sample printed with TPU exhibited higher temperature transfer compared to the EVA foam sample after 10 mins. In addition, the temperature transfer was better when there were holes, and rate decreased when the sample was covered with fabric. We confirmed that material selection of the pad and thermal conductivity of the cover are extremely important in solving thermal stress to the human body caused by functional clothing with protectors. Additionally, as the protector, it is recommended to design the outer shell with a passage, such as a hole, to allow the rapid transfer of heat to the external environment.

Studies on Transfer Printing of Cotton and Polyester/Cotton Blended Fabrics Treated with Water Soluble Polyurethane Resin (수용성 폴리우레탄 수지 처리된 면 및 폴리에스테르/면 혼방직물의 전사날염에 관한 연구)

  • 황종호;전병익
    • Textile Coloration and Finishing
    • /
    • v.11 no.5
    • /
    • pp.13-21
    • /
    • 1999
  • In this study, selected cotton fabrics and polyester/cotton(P/C) blended fabrics are treated with a soluble polyurethane(SPU) and then, printed by heat transfer to determine the effect of SPU treatment on dye uptake of the samples. The results obtained are as follows: 1) In heat transfer, dye-uptake gets higher in Vopotion to temperature and time. The optimum printing temperature and printing time of C.I. Disperse Orange 3 and C.I. Disperse Violet 1 are $200^\circ{C}$ and 50sec. 2) Dye-uptake gets higher according to SPU concentration ; both cotton and P/C fabrics show the highest at $100g/\ell$. 3) In color, as temperature, time and SPU concentration increase, P/C fabrics show more yellowish orange color than cotton fabrics in case of C.I. Disperse Orange 3 and P/C fabrics show more reddish violet color than cotton fabrics in case of C.I. Disperse Violet 1. 4) All fastness of cotton and P/C fabrics treated with SPU are good, but color fastness to washing and water of cotton fabrics treated with SPU are not good.

  • PDF

Experimental analysis of heat exchanger performance produced by laser 3D printing technique (레이저 3D 프린팅 기법으로 제작한 열교환기 성능시험 분석 연구)

  • Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.270-276
    • /
    • 2020
  • 3D printing is an additive manufacturing technology that can produce complex shapes in a single process for a range of materials, such as polymers, ceramics, and metals. Recent 3D printing technology has developed to a level that enables the mass-production through an improvement of the printing speed and the continuous development of applicable materials. In this study, 3D printing technology using a laser was applied to manufacture a heat exchanger for an air compressor in a railway vehicle. First, the optimal design of the heat exchanger was carried out by focusing on weight reduction and compactness as a shape suitable for 3D printing. Based on the design derived, heat exchanger prototypes were made of AlSi10Mg alloy material by applying the SLM technique. Moreover, the manufactured prototypes were attached to an existing air compressor, and the heat exchange performance of the compressed air was tested. The test results of the 3D printed prototypes showed a heat exchange performance of approximately 80% and 85% at low and high-pressure, respectively, compared to the existing heat exchanger. From the 𝓔-NTU method results with an external cooling air condition similar to that of the existing heat exchanger, the calculated heat transfer amount of 3D printed parts showed similar performance compared to the existing heat exchanger. As a result, the 3D printed heat exchanger is lightweight with good performance.

Color and Fastness Properties of Nylon Transfer Digital Textile Printing(DTP) using Acrylic-based Polymer as Pre-treatment Agent (나일론 전사 DTP 원단 전처리에 따른 발색성 및 견뢰도 특성)

  • Kim, Hyeok-Jin;Hong, Jin-Pyo;Kwak, Dong-Sup;Seo, Hye-Ji;Kim, Hyun-Jo
    • Textile Coloration and Finishing
    • /
    • v.31 no.2
    • /
    • pp.88-97
    • /
    • 2019
  • In this study, when printed on a nylon material, the color strength and fastness are lower than that of a polyester material, and the nylon material shrinks due to heat and pressure, resulting in poor design and poor compatibility. To overcome this problem, we investigated the possibility of transfer DTP by adding pre-treatment process to nylon transfer DTP process. For the basic study of pre-treatment preparation, we used pure nylon material which is not compounded and dispersion ink and transfer paper applied to existing PET transfer DTP. Pre-treatment preparations were classified into three types of acryl-base polymer and pre-treated with nylon and then applied to transfer DTP to confirm their color strength and fastness. The color strength of the pre-treated nylon material increased and poly-methyl-acrylate amulsion pre-treatment showed the best color at $210^{\circ}C$, 1.5m/min and 0.3MPa. The nylon material pre-treated with washing, friction, and light fastness was judged to be more excellent and stable.

A Study on Pre-treatment and Performance Evaluation for Printing RFID Antenna with Conductive Paste (RFID 안테나용 전도성 프린팅을 위한 PET 직물의 최적 전처리 공정연구 및 성능평가)

  • Hong, Jinpyo;Jung, Chando;Yoon, Seokhan;Choi, Sanghyun
    • Textile Coloration and Finishing
    • /
    • v.25 no.4
    • /
    • pp.287-291
    • /
    • 2013
  • Nowadays, terms such as 'Smart Textile', 'Intelligent Textile' and 'Wearable Computing' are commonly used in everyday contexts. And radio-frequency identification (RFID) is the use of a wireless non-contact system that uses radio-frequency electromagnetic fields to transfer data from a tag attached to an object, for the purposes of automatic identification and tracking. These products are required technologies which are textile treatments, printing, ink, etc. Durability of textile substrates is an essential marker for conductive ink printing process. Especially, heat stability is important, since conductive ink should be processable (annealing, curing) at temperatures below $150^{\circ}C$. This study was application of RFID on textiles. The textile pre-treatment processes should be carried out to use RFID antenna on textiles.

Development of Hybrid Induction Heating System for Laser Printer

  • Chae Young-Min;Kwon Joong-Gi;Han Sang-Yong;Sung Hwan-Ho
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.178-185
    • /
    • 2006
  • Recently, the demand for the development of high quality and high-speed laser printers and efficient power utilization has required. Among complicated electro-mechanic devices in laser printers, the toner-fusing unit consumes above 90[%] of all electrical energy needed for printing devices. Therefore, the development of a more effective energy-saving toner fusing process becomes a significant task in great demand. Generally, there are several ways to implement a fusing unit. Among them this paper presents a new induction heating method. The proposed induction heating method enables the increase of coupling coefficient between heating coil and heat roller which also increases total energy transfer efficiency. Therefore, the proposed IH (Induction Heating) inverter system provides very fast W.U.T. (Warm UP Time) as well as higher efficiency. Through experimental results, the proposed control system is verified.