• Title/Summary/Keyword: heat transfer method

Search Result 2,033, Processing Time 0.027 seconds

Simultaneous Determination of Reference Free-Stream Temperature and Convective Heat Transfer Coefficients (자유흐름 온도와 대류열전달 계수를 동시에 측정할 수 있는 실험 방법에 대한 연구)

  • Jeong, Gi-Ho;Song, Ki-Bum;Kim, Kui-Soon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1707-1714
    • /
    • 2002
  • This paper deals with the development of a new method that can obtain heat transfer coefficient and reference free stream temperature simultaneously, The method is based on transient heat transfer experiments using two narrow-band TLCs. The method is validated through error analysis in terms of the random uncertainties in the measured temperatures. It is found that the errors could be reduced more than 2 times less. The general method described in this paper is applicable to many heat transfer models with unknown free stream temperature.

A study on the Evaluation of Heat Transfer Coefficient by Optimization Algorithm (최적화 기법을 활용한 열전달계수의 측정)

  • Kim, J.T.;Lim, C.H.;Choi, J.K.
    • Transactions of Materials Processing
    • /
    • v.15 no.9 s.90
    • /
    • pp.679-685
    • /
    • 2006
  • New method for evaluation of heat transfer coefficient is proposed. In general, many researchers have been studied about inverse problem in order to calculate the heat transfer coefficient on three-dimensional heat conduction problem. But they can get the time-dependent heat transfer coefficient only through inverse problem. In order to acquire temperature-dependent heat transfer coefficient, it requires much time for numerous repetitive calculation and inconvenient manual modification. In order to solve these problems, we are using the SQP(Sequential Quadratic Programming) as an optimization algorithm. When the temperature history is given by experiment, the optimization algorithm can evaluate the temperature-dependent heat transfer coefficient with automatic repetitive calculation until difference between calculated temperature history and experimental ones is minimized. Finally, temperature-dependent heat transfer coefficient evaluated by developed program can used on various heat transfer problem.

Flow and Heat Transfer Within a Rectangular Film Cooling Hole of Normal Injection Angle (수직분사각도를 갖는 직사각 막냉각홀 내부에서의 유동 및 열/물질전달 특성)

  • Hong, Sung-Kook;Lee, Dong-Ho;Kang, Seung-Goo;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.456-466
    • /
    • 2004
  • An experimental study has been conducted to investigate the flow and heat/mass transfer characteristics within a rectangular film cooling hole of normal injection angle for various blowing ratios and Reynolds numbers. The results are compared with those for the square hole. The experiments have been performed using a naphthalene sublimation method and the flow field has been analyzed by numerical calculation using a commercial code (FLUENT). The heat/mass transfer around the hole entrance region is enhanced considerably due to the reattachment of separated flow and the vortices generated within the hole. At the hole exit region, the heat/mass transfer increases because the main flow induces a secondary vortex. It is observed that the overall heat/mass transfer characteristics are similar to those for the square hole. However, the different heat/mass transfer patterns come out due to increased aspect ratio. Unlike the square hole, the heat/mass transfer on the trailing edge side of hole entrance region has two peak regions due to split flow reattachment, and heat/mass transfer on the hole exit region is less sensitive to the blowing ratios than the square hole.

Simulation of Heat Supply Control of Continuous Heating System of Multistoried Apartment in Consideration of Radiation Heat Transfer (복사열전달을 고려한 고층아파트 연속난방 열공급제어 시뮬레이션)

  • Choi, Y.D.;Hong, J.K.;Yoon, J.H.;Lee, N.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.2
    • /
    • pp.78-92
    • /
    • 1994
  • Thermal performance of pipe network of continuous heating system controlled by thermostat and flow control valve was simulated in consideration of radiation heat transfer and solved by linear analysis method. Thermal performance of real apartment building with radiant floor heating system was simulated by equivalence heat resistance-capacity method. This method enables to simulate the unsteady variation of temperature or each element of building. Heat transfer characteristics of each element were also investigated.

  • PDF

Improvement of Estimation Accuracy of Thermal Deformation on Machine Tool by Inverse method (역해법에 의한 공작기계의 열변형 예측정도의 향상)

  • Lee, Jong-Du
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.126-131
    • /
    • 2001
  • One of the major obstacles in testing or evaluating precisely the thermal behavior of a machine tool is the difficulty in measuring the heat transfer coefficients on the surfaces by a conventional method. This paper presents a new approach based on the inverse method to identify the values of heat transfer coefficients by using temperature changes measured on the surfaces of a machine tool during a short period in its operating. In the present method, a machine tool structure is modeled by the finite element method and the characteristic curves of the temperature change at several points on machine tool surfaces are theoretically derived in the form that they contain the heat transfer coefficient as an unfixed heat source are approximated so that the theoretical characteristic curves of temperature change fit the measured ones as closely as possible.

  • PDF

An Experimental Study on a Simultaneous Determination of Reference Free-Stream Temperature and Convective Heat Transfer Coefficients (자유흐름온도와 대류열전달계수를 동시에 측정할 수 있는 방법에 대한 실험적 연구)

  • 송기범;정기호;성영식;김귀순
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1465-1471
    • /
    • 2002
  • This paper deals with the development of a new method that can obtain the heat transfer coefficient and the reference free stream temperature simultaneously. The method is experimentally verified through comparison with results in convective heat transfer experiments of a circular impinging jet using two narrow-band TLCs. The general method described in this paper is highly recommended to many heat transfer models with the unknown or ambiguous free stream temperature.

A Study on the Radiation Heat Transfer Characteristics of Liquid Droplet Radiator (액적방열기의 복사열전달 특성에 관한 연구)

  • 김금무;김용모;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.32-40
    • /
    • 1994
  • The radiative heat transfer analysis in particle layer has an inherent difficulty in treating the governing integro-differential equations, which are derived from the remote effects. Most of the existing analyses are limited to the one dimensional system, taking into account only absorption or isotropic scatting of solid particles. Fortunately, a new Monte Carlo Simulation method is recently developed to analyse multidimensional radiative heat transfer in particles with anisotropically scatting. By this method, the present study analyses the radiative heat transfer in dispersed particles through the numerous droplets in the liquid droplet radiator to develop a technique of liquid droplet radiator. Consequently, knows that the radiative heat flux in particle layer is influenced by exitinction coefficient, optical thickness and surface area of particles in the system.

  • PDF

3D simulation of Heat transfer in MEMS-based microchannel (MEMS 로 제작된 마이크로 채널에서의 3 차원 열전달 해석)

  • Choi, Chi-Woong;Huh, Cheol;Kim, Dong-Eok;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1870-1875
    • /
    • 2007
  • The microchannel heat sink is promising heat dissipation method for high heat flux source. Contrary to conventional circular channel, MEMS based microchannel had rectangular or trapezoidal cross-sectional shape. In our study, we conducted three dimensional conjugate heat transfer calculation for rectangular shape microchannel. First, we simulated that channel was completely drained with known heating power. As a result we obtained calibration line, which indicates heat loss was function of temperature. Second, we simulated single phase heat transfer with various mass flux, 100-400 $kg/m^2s$. In conclusion, the single phase test verified that the present heat loss evaluation method is applicable to micro scale heat transfer devices. Heat fluxes from each side wall shows difference due to non-uniform heating. However those ratios were correlated with supplied total heat. Finally, we proposed effective area correction factor to evaluate appropriate heat flux.

  • PDF

Combined Streamline Upwind Petrov Galerkin Method and Segregated Finite Element Algorithm for Conjugate Heat Transfer Problems

  • Malatip Atipong;Wansophark Niphon;Dechaumphai Pramote
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1741-1752
    • /
    • 2006
  • A combined Streamline Upwind Petrov-Galerkin method (SUPG) and segregated finite element algorithm for solving conjugate heat transfer problems where heat conduction in a solid is coupled with heat convection in viscous fluid flow is presented. The Streamline Upwind Petrov-Galerkin method is used for the analysis of viscous thermal flow in the fluid region, while the analysis of heat conduction in solid region is performed by the Galerkin method. The method uses the three-node triangular element with equal-order interpolation functions for all the variables of the velocity components, the pressure and the temperature. The main advantage of the presented method is to consistently couple heat transfer along the fluid-solid interface. Four test cases, which are the conjugate Couette flow problem in parallel plate channel, the counter-flow in heat exchanger, the conjugate natural convection in a square cavity with a conducting wall, and the conjugate natural convection and conduction from heated cylinder in square cavity, are selected to evaluate efficiency of the presented method.

A Study on the Turbulent Natural Convection - Radiative Heat Transfer In a Partitioned Enclosure (차폐막이 있는 밀폐공간 내에서의 난류 자연대류 - 복사열전달에 관한 연구)

  • 박경우;이주형;박희용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2738-2750
    • /
    • 1994
  • The Effects of radiative heat transfer on turbulent flow in a partitioned enclosure is studied numerically. The enclosure is partially divided by a thin, poorly conducting vertical divider projecting from the ceiling of the enclosure. The low Reynolds number $k-{\epsilon}$ model is adopted to calculate the turbulent flow field. The solutions to the radiative transfer equations are obtained by the discrete ordinates method(DOM). This method is based on control volume method and is compatible with the SIMPLER algorithm used to solve the momentum and energy equations. The effects of optical thickness and Planck number on the flow, temperature fields and heat transfer rates are investigated for a moderate Rayleigh number($=10^9$). The changes in buoyant flow fields and temperature distributions due to the variation of baffle length are also analyzed. From the predictions, radiant heat exchange between the baffle and the sidewalls strongly influences the temperature distribution in the baffle and its vicinity and total heat transfer increases as the optical thickness and the baffle length decrease. It is possible to neglect the radiative heat transfer effect when Planck number is over one.