• Title/Summary/Keyword: heat transfer method

Search Result 2,034, Processing Time 0.031 seconds

Simultaneous determination of reference free-stream temperature and convective heat transfer coefficients (자유흐름온도와 대류열전달계수를 동시에 측정할 수 있는 실험 방법에 대한 연구)

  • Jeong, Gi-Ho;Song, Ki-Bum;Kim, Kui-Soon
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.419-424
    • /
    • 2001
  • This paper deals with the development of a new method that can obtain heat transfer coefficient and reference tree stream temperature simultaneously. The method is based on transient heat transfer experiments using two narrow-band TLCs. The method is validated through error analysis in terms of the random uncertainties in the measured temperatures. It is shown how the uncertainties in heat transfer coefficient and tree stream temperature can be reduced. The general method described in this paper is applicable to many heat transfer models with unknown free stream temperature.

  • PDF

APPLICATIONS OF ELECTROPLATING METHOD FOR HEAT TRANSFER STUDIES USING ANALOGY CONCEPT

  • Ko, Sang-Hyuk;Moon, Deok-Won;Chung, Bum-Jin
    • Nuclear Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.251-258
    • /
    • 2006
  • This study presents an idea of using analogy concept to the heat transfer studies regarding the HTGR development. Theoretical backgrounds regarding the idea were reviewed. In order to investigate the predictability of a mass transfer system for heat transfer system phenomenology, an electroplating system coupled with a limiting current technique was adopted. Test facilities for laminar forced convection and natural convections under laminar and turbulent conditions were constructed, for which heat transfer correlations are known. The test results showed a close agreement between mass transfer and heat transfer systems, which is an encouraging indication of the validity of the analogy theory and the experimental methodology adopted. This paper shows the potential of the experimental method that validates the little-understood heat transfer phenomena, even in complex geometries such as HTGR.

Measurement of Heat Transfer Coefficient of Magnesium Alloy and Temperature Change of Roll using Heat Transfer Solidification Analysis Method (전열응고해석법을 이용한 마그네슘합금의 열전달계수 및 롤의 온도변화 측정)

  • Han, Chang-Suk;Lee, Chan-Woo
    • Korean Journal of Materials Research
    • /
    • v.32 no.9
    • /
    • pp.391-395
    • /
    • 2022
  • Research is being actively conducted on the continuous thin plate casting method, which is used to manufacture magnesium alloy plate for plastic processing. This study applied a heat transfer solidification analysis method to the melt drag process. The heat transfer coefficient between the molten magnesium alloy metal and the roll in the thin plate manufacturing process using the melt drag method has not been clearly established until now, and the results were used to determine the temperature change. The estimated heat transfer coefficient for a roll speed of 30 m/min was 1.33 × 105 W/m2·K, which was very large compared to the heat transfer coefficient used in the solidification analysis of general aluminum castings. The heat transfer coefficient between the molten metal and the roll estimated in the range of the roll speed of 5 to 90 m/min was 1.42 × 105 to 8.95 × 104 W/m2·K. The cooling rate was calculated using a method based on the results of deriving the temperature change of the molten metal and the roll, using the estimated heat transfer coefficient. The DAS was estimated from the relationship between the cooling rate and DAS, and compared with the experimental value. When the magnesium alloy is manufactured by the melt drag method, the cooling rate of the thin plate is in the range of about 1.4 × 103 to 1.0 × 104 K/s.

Heat transfer coefficients for F.E analysis in warm forging processes (온간 단조 공정에서의 열전달 계수)

  • Kang J. H.;Ko B. H.;Jae J. S.;Kang S. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.138-143
    • /
    • 2005
  • Finite Element analysis is widely applied to elevated temperature forging processes and shows a lot of information of plastic deformation such as strain, stress, defects, damages and temperature distributions. In highly elevated temperature deformation processes, temperature of material and tool have significant influence on tool life, deformation conditions and productivities. To predict temperature related properties accurately, adequate coefficients of not only contact heat transfer between material and dies but also convection heat transfer due to coolants are required. In most F.E analysis, too higher value of contact heat transfer coefficient is usually applied to get acceptable temperature distribution of tool. For contact heat transfer coefficients between die and workpiece, accurate values were evaluated with different pressure and lubricants conditions. But convection heat transfer coefficients have not been investigated for forging lubricants. In this research, convection heat transfer coefficients for cooling by emulsion lubricants are suggested by experiment and Inverse method. To verify acquired convection and contact heat transfer coefficients, tool temperature was measured for the comparison between measured tool temperature and analysis results. To increase analysis accuracy, repeated analysis scheme was applied till temperature of the tool got to be in the steady-state conditions. Verification of heat transfer coefficients both contact and convection heat transfer coefficients was proven with good accordance between measurement and analysis.

  • PDF

Analysis of Radiative-Convective Heat Transfer about a Circular Cylinder in Crossflow Using Finite Volume Radiation Solution Method (유한체적 복사전달해석법을 이용한 주유동중에 놓인 원형실린더 주위에서의 복사-대류 열전달해석)

  • Lee, Gong-Hun;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.346-358
    • /
    • 1996
  • A finite volume radiation solution method was applied to a non- orthogonal coordinate system for the analysis of radiative-convective heat transfer about a circular cylinder in crossflow. The crossflow Reynolds number based on the cylinder radius was 20, and the fluid Prandtl number was 0.7. The radiative heat transfer coupled with convection was reasonably predicted by the finite volume radiation solution method. The investigation includes the effects of conduction- to-radiation parameter, optical thickness, scattering albedo and cylinder wall-emissivity on heat transfer about the cylinder. As the conduction- to-radiation parameter decreases, the radiative heat transfer rate increases and conduction rate as well due to the increase in temperature gradient on the cylinder wall which is caused by radiation enhancement. With an increase in the optical thickness, the Nusselt number increases significantly and the temperature gradient shows similar behavior. Though the radiative heat transfer increases with the scattering albedo, the total heat transfer decreases. This is because the decrease in the conduction heat transfer exceeds the increase in the radiation heat transfer. As the wall- emissivity increases, the radiation absorbed in the vicinity of the cylinder wall increases and thereby the total heat transfer increases, even though the conduction heat transfer decreases.

A Study on the Fin Efficiency of Continuous Fin with Combined Heat and Mass Transfer (열과 물질 전달을 수반하는 연속휜의 휜효율에 관한 연구)

  • 정세환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.445-450
    • /
    • 1998
  • In the present paper the effects of combined heat and mass transfer on the fin efficiency were calculated. Sector method was used for calculating the fin efficiency of the continuous fin. The parameter Lewis No. and C which describe the combined heat and mass transfer is derived by using the heat and mass transfer analogy and effects of Lewis No. and C on the fin efficiencies were calculated.

  • PDF

Validation of Extended Building Heat Transfer Model (건축전열모델의 확장에 관한 연구)

  • 조민관
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.5
    • /
    • pp.422-431
    • /
    • 2003
  • Theory of the building heat transfer is generally limited to the heat flux to the surfaces of windows and walls, which influences the indoor climate of a building, in the field of architectural environmental engineering. While the heat flux from the buildings to their environment has been considered in the viewpoint of urban climate, its conventional theory have been rarely examined. The purpose of this study is to propose a building-urban heat transfer model for defining the relation between the building and the urban climate by extending the building heat transfer model. In this study, the extended building heat transfer model, where response factor method is used, is established on the urban space and the indoor space by the boundary of building envelopes. Computer simulation (HASP/ACLD) is conducted on the subjected urban area by the established building-urban heat transfer model. As a result it is logically proved that the short waves of solar radiation, which interact with long Waves of radiation from the buildings and the earth, increase the urban air temperature ana buildings largely influence on the urban climate.

Analysis of Thermal Loading of a Large LPG Engine Piston Using the Inverse Heat Conduction Method (열전도의 역문제 방법을 이용한 대형 LPG 엔진 피스톤의 열부하 해석)

  • Park Chul-Woo;Lee Boo-Youn
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.820-827
    • /
    • 2006
  • The convection heat transfer coefficients on the top surface of a large liquid petroleum liquid injection(LPLi) engine piston are analyzed by solving an inverse thermal conduction problem. The heat transfer coefficients are numerically found so that the difference between analyzed temperatures from the finite element method and measured temperatures is minimized. Using the resulting heat transfer coefficients as the boundary condition, temperature of a large LPLi engine piston is analyzed.

  • PDF

Heat Transfer Characteristics of Electronic Components in a Horizontal Channel According to Various Cooling Methods (다양한 냉각방법에 따른 수평채널 내 전자부품의 열전달 특성)

  • Son, Young-Seok;Shin, Jee-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.854-861
    • /
    • 2008
  • Heat transfer characteristics of protruding electronic components in a horizontal channel are studied numerically. The system consists of two horizontal channels formed by two covers and one printed circuit board which has three uniform protruding heat source blocks. A two-dimensional numerical model has been developed to predict the conjugate heat transfer. and the finite volume method is used to solve the problem. Five different cooling methods are considered to examine the heat transfer characteristics of electronic components according to the different cooling methods. The velocity and temperature of cooling medium and the temperature of the heat source blocks are obtained. The results of the five different cooling methods are compared to find out the most efficient cooling method in a given geometry and heat sources.

Analysis of Heat Transfer Characteristics of Internal Heat Exchanger for $CO_2$ Refrigerator using the Hardy-Cross Method (Hardy-Cross법을 이용한 $CO_2$ 냉동기용 내부열교환기의 열전달 특성 연구)

  • Kang Hee-Dong;Kim Ook Joong;Seo Tae-Beom
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • The heat transfer characteristics of an internal heat exchanger for $CO_2$ refrigeration cycle are numerically investigated. The numerical model is verified using the published experimental results for the concentric tube type internal heat exchanger. The Hardy-Cross Method gives very good agreement between the calculation and experimental results on the heat transfer rates and exit temperatures. Also, appropriate combination of heat transfer correlations is found. The operating parameters of the heat exchanger are calculated at transcritical region of $CO_2.$ The heat transfer rate of the counter flow type heat exchanger shows the $32\%$ greater than that of the parallel flow type heat exchanger. The increase of heat exchanger length enhances the heat transfer rate. The thermodynamic characteristics and heat transfer coefficient of $CO_2$ in the internal heat exchanger are estimated.