• Title/Summary/Keyword: heat transfer in low vacuum

Search Result 29, Processing Time 0.033 seconds

Experimental Study of Heat Transfer in Vacuum Furnace (진공상태에서의 전열현상에 대한 실험적 연구)

  • Yang, Je-Bok;Kim, Won-Bae;Dong, Sang-Keun
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.109-113
    • /
    • 2003
  • Low pressure or vacuum carburizing(LPC) has undergone major further developments since 1980 and now it has achieved industrial maturity. The advantage of low pressure vacuum carburizing over gas carburizing is not only the creation of surface entirely free of oxide and environmentally friendly but also a reduction in batch times, lower gas and energy consumption and the prevention of soot. In this study the experiment was carried out to investigate the effects of vacuum atmosphere in the heating furnace. Heat transfer rate and uniformity of temperatures of test samples in the pressure range of a few 0.1torr was examined on a test charge of 100kg. It is found that the fuel saving rate due to decreasing heating time reach to 20% in the vacuum heating mode as compared with atmospheric heating mode. Also the uniformity of temperatures in the samples was improved significantly in the vacuum heating mode. Also the effects of the RC fan for stirring atmosphere inside furnace was examined. Results shows RC fan appears to provide a reasonable tool for improving uniformity of temperature in the atmospheric heating mode.

  • PDF

Experimental Study on Manufacturing of Insulation Vacuum Glazing and Measurement of the Thermal Conductance (단열 진공유리의 제작 및 열전달계수 측정에 관한 실험적 연구)

  • Lee Bo-Hwa;Yoon Il-Seob;Kwak Ho-Sang;Song Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.8 s.251
    • /
    • pp.772-779
    • /
    • 2006
  • Window is a critical component in the design of energy-efficient buildings. To minimize the heat loss, insulation performance of the glazing has to be improved. Manufacturing of vacuum glazing has been motivated by the possibility of making windows of very good thermal insulation properties for such applications. It is made by maintaining vacuum in the gap between two glass panes. Pillars are placed between them to withstand the atmospheric pressure. Edge covers are applied to reduce conduction through the edge. Accurate measurements have been made of the radiative heat transfer, the pillar conduction and the gas conduction using a guarded hot plate apparatus. Vacuum glazing is found to have low thermal conductance roughly below $1W/m^2K$. Among the heat transfer modes of residual gas conduction, conduction through support pillar and the radiative heat transfer between the glass panes, the last one is the most dominant to the overall thermal conductance. Vacuum glazing using very low emittance AI-coated glass has an overall thermal conductance of about $0.7W/m^2K$.

Heat Transfer between Substrate and Substrate-heater in Low Vacuum (저진공 내 시료가열판과 시료의 열전달)

  • Park, Hyon-Jae;Oh, Soo-Ghee;Shin, Yong-Hyeon;Chung, Kwang-Hwa
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.4
    • /
    • pp.302-310
    • /
    • 2008
  • Heat transfer between substrate and substrate-heater in low vacuum was investigated. The convection related with gas flow and pressure, the heat conduction considering surface roughness and contact pressure, and the heat loss by radiation depending on the surface emissivity were considered. The coefficient of heat conduction $h_c$ in the Fourier's law were determined experimentally from the temperature difference between the substrate and the substrate-heater in the range of substrate-heater temperature $100\;-\;500^{\circ}C$, in the pressures of 300 mTorr - 1 Torr. The temperature difference was then calculated in the reverse way for the purpose of verification, using the heat flow and the experimentally determined coefficients. The verified temperature differences were thus obtained within 0.33 % error.

Analysis of Heat Transfer of a Magnetic Fluid Seal (자성유체씰의 열전달 해석)

  • Kim, Ock-Hyun;Lee, Hee-Bok;Lee, Min-Ki;Hong, Jeong-Hui;Kwak, Yong-Woon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.365-369
    • /
    • 2010
  • Magnetic fluid seal is characterized by its simple design, low friction and being dustless. Those advantages are deduced from the fact that the sealing element is not a solid such as rubber or plastic but it is a fluid. Those are critical for application to a rotating shaft which is inserted into a vacuum chamber where high level of vacuum and cleanness are required. For the reason the magnetic fluid seal has become a standard for vacuum chambers for semiconductor and LCD processing. It should be noted that its sealing performance is sensitive to temperature. If necessary, water cooling should be considered. Thus anticipation of the temperature distribution of the magnetic fluid seal is important before applying it. In this paper an FEM analysis of the heat transfer has been executed and compared with experimental results. An overall convective heat transfer coefficient has been adopted for the analysis, which results in satisfactory consistency of the theoretical and experimental results.

A Study on the Heat Transfer Phenomenon through the Glazing System (창호를 통한 열전달 현상에 관한 연구)

  • Kang, Eun-Yul;Oh, Myung-Won;Kim, Byung-Sean
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.32-37
    • /
    • 2009
  • An energy loss through the window system occupies about 10 to 30 percent on energy consumption of the whole building. That is the reason, several elements for a building composition of window system are the weakest from the heat. Insulation performance increases for the reducing heat loss. Heat transfer through the window system that is reducing heat transfer through conduction, convection and radiation. Insulation performance reinforcement methods classify improving heat specific quality of window system and improving efficiency of whole window system. The most application method among each methods is reducing emission ratio of the window system(Low-E glass), increasing a number of glazing(multiple window) and a method of vacuuming between glazing and glazing. Therefore this study is investigated a sort of glazing and specific character, U-value calculation with changing glazing thickness and calculation of temperature distribution and U-value with a glazing charging gas kind from double glazing. For a conclusion, an aspect of U-value figure at the smallest value case of vacuum glazing with Low-E coating. That means insulation efficiency is the best advantage during a building plan selecting vacuum glazing with Low-E coating for a energy saving aspect. In this way, U-value become different the number of glazing, coating whether or not and selecting injection gas. Therefore selecting of glazing is very important after due consideration by a characteristic and use of building and consideration of strong point and weak point.

  • PDF

Study on Characteristics of Heat Transfer and Flow in Plate Heat Exchanger (판형 열교환기의 열전달과 유동특성에 대한 연구)

  • Jin, Zhen-Hua;Lee, Kwang-Sung;Ji, Myoung-Kuk;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1476-1483
    • /
    • 2009
  • In present work, experiments conducted to investigate the heat transfer characteristics and relationship between operating parameters and production of fresh water as output of the system. Plate Heat Exchanger (PHE) applied in vacuum evaporator for product fresh water that system intended to efficiently use low grade heat. PHE have become popular in chemical, power, food and refrigeration industries due to the efficient heat transfer performance, extremely compact design and flexibility of extend or modify to suit changed duty. The heat transfer part contains corrugated plates with 60 degree of chevron angle which verified by many researchers and commonly apply. Fresh water can be produced from saline water under near vacuum pressure by operating ejector. Consequently, evaporating temperature stay around $51-57^{\circ}C$ so it is possible to use any low grade heat source or renewable source. The maximum fresh water produced by freshwater generator with plat heat exchanger applied in the study was designed as 1.0 Ton/day.

  • PDF

Low temperature vacuum drying heat transfer characteristics of Korean raw oysters (한국산 굴의 저온진공건조 열전달특성에 관한 연구)

  • Kim, Kyung-gun;Song, Chi-sung;Choi, Se-hyun;Lee, Seo-Yeon;Mun, Soo-Beom
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • Oysters are rich in nutrients with good flavor, and disease prevention is required in both the East and the West for high-quality seafood. The best way to store and transport mass-produced oysters is using dry techniques. Using both hot and frozen drying technologies to obtain a perfectly dried oyster often destroys much of the flavor and nutrients found with the oyster meat. This study uses a low temperature vacuum drying technology to investigate the final weight ratio of wild and farmed dried oysters. Additionally, the heat transfer characteristics of steamed oysters are discussed in this paper.

Sound Absorption Property of Heat-Treated Wood at A Low Temperature and Vacuum Conditions

  • Byeon, Hee-Seop;Park, Jung-Hwan;Hwang, Kyo-Kil;Park, Han-Min;Park, Beyung-Soo;Chong, Song-Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.101-107
    • /
    • 2010
  • Heat treatment was performed to improve sound absorption properties for four tree species; Tulip tree, Korean Paulownia, Red pine and Costata birch, at temperature of $175^{\circ}C$ and $200^{\circ}C$under vacuum condition. Sound absorption properties of two kinds of boards, which were in radial and tangential sections, were measured under a frequency range of 100 to 3200 Hz by the two microphone transfer function method. It was found that sound absorption properties were increased by heat treatment and the efficiency was higher at $200^{\circ}C$ than that at $175^{\circ}C$. Even Costata birch had a little effect on low temperature of $175^{\circ}C$, $200^{\circ}C$ heat treatment for sound absorption property, the efficiencies of sound absorption were 14, 19%, respectively. The efficiencies of sound absorption ranged 22 to 120% for heat-treated Tulip tree, Korean Paulownia.

Study on thermal performance of vacuum window with various low-ε coating glasses (저방사 코팅이 진공창의 열성능에 미치는 영향)

  • Cho, S.H.;Tae, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.3
    • /
    • pp.300-311
    • /
    • 1997
  • A theoretical method was developed to analyze the effect of low-$\varepsilon$ coatings which have influence on thermal performance of vacuum windwo glazing and double pane glazing. The overall heat transfer coefficient(U) value and thermal performance were analyzed by theroretical method on various kins of windows. TRNSYS program was used to analyze total heating and cooling energy consumption on the model building which has various windows. As the result, better thermal insulation can be achieved on the vacuum window glazing than double pane glazing when low-$\varepsilon$ coating was done on the surface of glass. Total heating and cooling energy consumption was almost same on the double pane window glazing but was lessened on the vacuum window glazing when the window size of south direction increased. Therefore, low-$\varepsilon$ coating was very necessary for vacuum window glazing in order to improve thermal insulation performance and efficient energy conservation can be achieved by vacuum window glazing at the real building which has large window.

  • PDF

A Study on the Thermal Characteristics of the Low Temperature Vacuum Dryer by the Vacuum Chamber Temperature (진공실 온도에 의한 저온진공건조기의 열적 특성에 관한 연구)

  • Choe, S.Y.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.23-28
    • /
    • 2010
  • Of the roughly four million known substances, about 60,000 are processed and sold ; many of these must be dried. Many materials are processed in the liquid state - ideal for mixing and reacting - but most products are needed or wanted as dry, or relatively dry, solids. Usually operation is just below atmospheric pressure, as with direct dryers, but some are built for vacuum operation with pressures as low as 26.66kPa abs.. In spite of the global-class aquiculture agriculture and fisheries technology of our country, the processing technologies are lags behind the other nations relatively. These problems are considered to be caused directly by the lack of drying technologies. This paper is concerned to the experimental results of drying heat transfer characteristics for the green energy type vacuum dryer for the high quality agriculture and fisheries production.