• 제목/요약/키워드: heat transfer fluid

검색결과 1,400건 처리시간 0.033초

Analysis of the second grade fluid under the influence of thermal radiation with convective heat and mass transfer

  • Khurrum Fareed;Muzamal Hussain;Muhammad Taj;Abdelouahed Tounsi
    • Computers and Concrete
    • /
    • 제34권3호
    • /
    • pp.347-353
    • /
    • 2024
  • This paper investigates the second-grade fluid between two parallel plates. Fluid is produced due to stretching. Convective heat and mass transfer features are elaborated with thermal and solutal stratification. Thermal radiation and chemical reactions are also assumed in heat and mass transport processes partial differential. Formulated non-linear partial differential equations are transformed into non-linear ordinary differential equations by utilizing the suitable transformation. Convergent series solutions are computed via Homotopy Analysis Method (HAM). Effects of Hartman number, temperature field, velocity distribution and Prandtl number are sketched and analyzed through graphs. It is noticed that velocity field first decreases and after some distance it shows increasing behavior by the increment.

삼각형 단면 덕트 내의 Shear-Thinning 유체에 대한 열전달 촉진에 관한 연구 (A Study on Heat Transfer Enhancement for a Shear-Thinning Fluid in Triangular Ducts)

  • 이동렬
    • 한국산학기술학회논문지
    • /
    • 제12권9호
    • /
    • pp.3808-3814
    • /
    • 2011
  • 본 연구는 열교환기의 효율적인 설계를 위하여 열교환기 내의 삼각형 단면 덕트의 비뉴톤 유체의 압력강하 및 대류 열전달률 수치해석적으로 수행하였다. 비뉴톤 유체의 구성방정식은 기존의 비뉴톤 유체 멱법칙을 보완한 수정 멱법칙 모델을 채택하였다. 덕트 내의 압력강하를 의미하는 마찰계수와 수정 레이놀즈 수의 곱은 기존 연구의 문헌치와 비교할 때 뉴톤 유체 영역과 비뉴톤 멱법칙 영역에서 각각 0.13% 및 2.85% 내에서 일치함을 보였고 비뉴톤 수정멱법칙 유체 모델의 형태를 띠는 Shear-Thinning 유체를 열교환기 내의 삼각형 단면 덕트 내에서 사용하면 뉴톤 유체보다 62%의 압력강하를 감소시켰고 12%의 대류 열전달 향상을 발생시킬 수 있었다.

신경회로망기법을 사용한 엇갈린 딤플 유로의 최적설계 (Design Optimization of a Staggered Dimpled Channel Using Neural Network Techniques)

  • 신동윤;김광용
    • 한국유체기계학회 논문집
    • /
    • 제10권3호
    • /
    • pp.39-46
    • /
    • 2007
  • This study presents a numerical procedure to optimize the shape of staggered dimple surface to enhance turbulent heat transfer in a rectangular channel. The RBNN method is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer with shear stress transport (SST) turbulence model. The dimple depth-to-dimple print diameter (d/D), channel height-to-dimple print diameter ratio (H/D), and dimple print diameter-to-pitch ratio (D/S) are chosen as design variables. The objective function is defined as a linear combination of heat transfer related term and friction loss related term with a weighting factor. Latin Hypercube Sampling (LHS) is used to determine the training points as a mean of the design of experiment. The optimum shape shows remarkable performance in comparison with a reference shape.

열전도 물체가 존재하는 캐비티내 자연대류 열전달에 대한 수치적 연구 (NUMERICAL STUDY ON NATURAL CONVECTION HEAT TRANSFER IN A CAVITY CONTAINING A CENTERED HEAT CONDUCTING BODY)

  • 명현국;전태현
    • 한국전산유체공학회지
    • /
    • 제10권3호
    • /
    • pp.36-42
    • /
    • 2005
  • The present study numerically investigates the natural convection heat transfer in a 2-D square cavity containing a centered heat conducting body. Special emphasis is given to the influences of the Rayleigh number, the dimensionless conducting body size, and the ratio of the thermal diffusivity of the body to that of the fluid on the natural convection heat transfer in overall concerned region. The analysis reveals that the fluid flow and heat transfer processes are governed by all of them. Results for isotherms, vector plots and wall Nusselt numbers are reported for Pr = 0.71 and relatively wide ranges of the other parameters. Heat transfer across the cavity, in comparison to that in the absence of a body, are enhanced (reduced) in general by a body with a thermal diffusivity ratio less (greater) than unity. It is also found that the heat transfer attains a minimum as the body size is increased with a thermal diffusivity ratio greater than unity.

곡관부 하류에 핀휜이 부착된 회전 냉각유로의 최적설계 (Optimization of a Rotating Two-Pass Rectangular Cooling Channel with Staggered Arrays of Pin-Fins)

  • 문미애;김광용
    • 한국유체기계학회 논문집
    • /
    • 제13권5호
    • /
    • pp.43-53
    • /
    • 2010
  • This study investigates a design optimization of a rotating two-pass rectangular cooling channel with staggered arrays of pin-fins. The radial basis neural network method is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer with shear stress transport turbulent model. The ratio of the diameter to height of the pin-fins and the ratio of the streamwise spacing between the pin-fins to height of the pin-fin are selected as design variables. The optimization problem has been defined as a minimization of the objective function, which is defined as a linear combination of heat transfer related term and friction loss related term with a weighting factor. Results are presented for streamlines, velocity vector fields, and contours of Nusselt numbers, friction coefficients, and turbulent kinetic energy. These results show how fluid flow in a two-pass square cooling channel evolves a converted secondary flows due to Coriolis force, staggered arrays of pin-fins, and a $180^{\circ}$ turn region. These results describe how the fluid flow affects surface heat transfer. The Coriolis force induces heat transfer discrepancy between leading and trailing surfaces, having higher Nusselt number on the leading surface in the second pass while having lower Nusselt number on the trailing surface. Dean vortices generated in $180^{\circ}$ turn region augment heat transfer in the turning region and in the upstream region of the second pass. As the result of optimization, in comparison with the reference geometry, thermal performance of the optimum geometry shows the improvement by 30.5%. Through the optimization, the diameter of pin-fin increased by 14.9% and the streamwise distance between pin-fins increased by 32.1%. And, the value of objective function decreased by 18.1%.

스털링기관용 재생기에 관한 기초연구 (II) - 철망을 축열재로 한 재생기의 전열 및 유동손실특성 - (Basic Study on the Regenerator of Stilting Engine (II) - Heat transfer and flow friction loss characteristics of the regenerator with wire screen matrix -)

  • 김태한;이시민;이정택
    • Journal of Biosystems Engineering
    • /
    • 제27권6호
    • /
    • pp.529-536
    • /
    • 2002
  • The performance of stilting engine, in particular, its energy conversion efficiencies are critically influenced by the regenerator characteristics. The regenerator characteristics are influenced by effectiveness, void fraction. heat transfer loss and fluid friction loss in the regenerator matrix. These factors were influenced by the surface geometry and material properties of the regenerator matrix. The regenerator design goals arc good heat transfer and low pressure drop of working Bas across the regenerator. Various data for designing a wire screen matrix have been given by Kays and London(1984). The mesh number of their experiment. however, was confined below the No. 60. which seems rather small for the Stirling engine applications. In this paper. in order to provide a basic data for the design of regenerator matrix, characteristics of heat transfer and flow friction loss were investigated by a packed mettled of matrix in oscillating flow as the same condition of operation in a Stirling engine. Seven kinds of sing1e wire screen meshes were used as the regenerator matrices. The results are summarized as follows; 1. While the working fluid flew slowly in the regenerator. the temperature difference was great at the both hot-blow(the working fluid flows from healer to cooler) and cold-blow(the working fluid flows from cooler to healer). On the other hand. while the working fluid flew fast. the temperature difference was not distinguished. 2. The No.150 wire screen used as the regenerator matrix showed excellent performance than tile others. 3. Phase angle variation and filling rate affected heat transfer or regenerator matrices. 4. Temperature difference between the inlet and outlet of the regenerator is very hish in degree of 120 phase angle.

충전층내에서의 열전달특성에 관한 실험적 연구 (An experimental study on the heat transfer characteristics in packed bed)

  • 신현준;양한주;오수철
    • 오토저널
    • /
    • 제4권3호
    • /
    • pp.40-47
    • /
    • 1982
  • Heat transfer on packed bed is considered to be important for the effective designs of chemical reaction equipment, air conditioning system, and storage type heat exchanger, etc. Currently studies are being carried out quite actively in this field in order to increase the heat transfer efficiency. The effect of heat transfer is closely relater to materials, shapes, porosities and packing states of packed bed as well as mutual dimensional relations between particles and the container. Investigation shows that heat transfer results appear to be influenced by such parameters as fluid velocity through packed bed, mass flow, and thermal properties. It is noted that viscosity is also considered to be an important factor in this problem. In this study, effective thermal conductivities on packed bed, effects of thermal conductivity (Ke) and friction factor (Fk) according to change of porosity(.epsilon.) and Reynolds number(Reh(, and pressure loss of the fluid, are experimentally investigated. Results show that the effective thermal conductivity increases and the friction factor decreased, as against the increase of Reynolds number. But as the increase of porosity increase them both.

  • PDF

직사각형 덕트에서 전단율에 의존적인 열전도율을 갖는 비뉴턴 유체의 열전달 향사아에 관한 수치적 연구 (Numerical heat transfer in a rectangular duct with a non-newtonian fluid with shear-rate dependent thermal conductivity)

  • 김병석;신세현;손창현
    • 대한기계학회논문집B
    • /
    • 제21권6호
    • /
    • pp.773-778
    • /
    • 1997
  • The present study investigates the effect of the shear rate-dependent thermal conductivity of non-newtonian fluids on the heat transfer enhancement in a 2:1 rectangular duct flow. An axially-constant heat flux and a peripherally-constant temperature boundary conditions(H1) was adopted for a top-wall-heated configuration. The present numerical results of Nusselt numbers for SRDC(Separan) show heat transfer enhancement over those of SRIC. The Nusselt numbers increased linearly as Reynolds numbers increased. The heat transfer enhancement is due to an increased thermal conductivity near the wall, which is attributed to the shear rate-dependence.

NUMERICAL ANALYSIS OF AN ARC PLASMA IN A DC ELECTRIC FURNACE

  • Lee Yeon Won;Lee Jong Hoon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2004년도 추계학술대회 논문집
    • /
    • pp.30-33
    • /
    • 2004
  • In order to analyze the heat transfer phenomena in the plasma flames, a mathematical model describing heat and fluid How in an electric arc has been developed and used to predict heat transfer from the arc to the steel bath in a DC Electric Arc Furnace. The arc model takes the separate contributions to the heat transfer from each involved mechanism into account, i.e. radiation, convection and energy transported by electrons. The finite volume method and a SIMPLE algorithm are used for solving the governing MHD equations, i.e., conservation equations of mass, momentum, and energy together with the equations describing a standard $k-\varepsilon$ model for turbulence. The model predicts heat transfer for different currents and arc lengths. Finally these calculation results can be used as a useful insight into plasma phenomena of the industrial-scale electric arc furnace. from these results, it can be concluded that higher arc current and longer arc length give high heat transfer.

  • PDF

물-미립자 현탁액의 난류 열전달 향상에 관한 수치해석적 연구 (Numerical Study about Heat Transfer Enhancement of Water-Microparticles Suspension)

  • 정세훈;손창현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권3호
    • /
    • pp.29-35
    • /
    • 2000
  • The present numerical study investigates heat transfer enhancement mechanism for suspensions of polystyrene particles in water. Numerical simulations were done for turbulent hydrodynamic fully developed flows in a circular duct with constant wall heat flux. The experimental result of microparticle suspensions show 25∼45% heat transfer enhancement over those of water. The present numerical results show the main parameter for the heat transfer enhancement of microparticle suspension in a circular duct is the change of velocity profile by the non-Newtonian fluid behavior.

  • PDF