• 제목/요약/키워드: heat transfer correlations

검색결과 364건 처리시간 0.023초

다중열원 열회수형 유동층 열교환기의 전열성능에 대한 실험적 연구 (An Experimental Study on Heat Transfer Performance of Fluidized Bed Heat Exchanger for Heat Recovery from Multi-Heat Sources)

  • 박상일;고창복;이영수
    • 설비공학논문집
    • /
    • 제29권2호
    • /
    • pp.57-62
    • /
    • 2017
  • The heat transfer performance of a multi-heat-source fluidized bed heat exchanger was analyzed. The fluidized bed heat exchanger examined in this study can simultaneously recover the waste heat from gas, water vapor, and hot water. The effects of waste water flow rate, gas flow rate, and cooling water flow rate were examined to find their experimental correlations with the heat transfer coefficient. A computer program using the correlations was developed in this study to predict the thermal performance of the fluidized bed heat exchanger. The calculated heat transfer rates of gas, water vapor, waste water, and cooling water were compared with the measured values. It was found that the error of the calculated values was less than 12%.

오블롱 셀 플레이트 열교환기에서의 R-l34a, R-407C, R-410A의 응축성능에 관한 실험적 연구 (Study on R-l34a, R-407C, and R-410A Condensation Performance in the Oblong Shell and Plate Heat Exchanger)

  • 박재홍;김영수
    • 대한기계학회논문집B
    • /
    • 제28권12호
    • /
    • pp.1535-1548
    • /
    • 2004
  • Condensation heat transfer experiments were conducted with the oblong shell and plate heat exchanger without oil in a refrigerant loop using R-l34a, R-407C and R-410A. An experimental refrigerant loop has been developed to measure the condensation heat transfer coefficient h$_{r}$ and frictional pressure drop $\Delta$p$_{f}$ of the various refrigerants in a vertical oblong shell and plate heat exchanger. The effects of the refrigerant mass flux(40∼80kg/$m^2$s), average heat flux(4∼8kW/$m^2$), refrigerant saturation temperature(30∼4$0^{\circ}C$) and vapor quality of refrigerants on the measured data were explored in detail. Similar to the case of a plate heat exchanger, even at a very low Reynolds number, the flow in the oblong shell and plate heat exchanger remains turbulent. A comparison of the performance of the various refrigerants revealed that R-410A had the highest heat transfer performance followed by R-l34a, and R-407C had the lowest performance of the refrigerants tested. The pressure drops were also reported in this paper. The pressure drops for R-410A were approximately 45% lower than those of R-l34a. R-407C had 30% lower pressure drops than R-l34a. Experimental results were compared with several correlations which predicted condensation heat transfer coefficients and frictional pressure drops. Comparison with the experimental data showed that the previously proposed correlations gave unsatisfactory results. Based on the present data, empirical correlations of the condensation heat transfer coefficient and the friction factor were proposed.tor were proposed.sed.

액체중의 원형 실린더 주위에서의 강제대류 층류 열전달에 관한 수치해석적 연구 (A Numerical Study on the Laminar convective Heat Transfer around a Circular Cylinder in a Uniform Cross Flow of Liquid)

  • 강신형;홍기혁
    • 설비공학논문집
    • /
    • 제8권1호
    • /
    • pp.26-36
    • /
    • 1996
  • Many researches were carried out to estimate heat transfer rate on a circular cylinder in a uniform flow. Various empirical correlations were suggested in the past through experimental studies, however there are considerable discrepancies in the estimated values of heat transfer coefficient. The effect of fluid physical properties on the forced convective heat transfer between a circular cylinder and the external flow was numerically investigated in the present study, The flow and temperature fields were solved using a Finite Volume Method over a wider range of Prandtl number(0.7-40,000) than existing correlations. The cold as well as the hot cylinders in the uniform liquid flow of constant temperature were investigated. A unified correlation was obtainde for both cases.

  • PDF

옵셋 스트립 휜을 가로지르는 오일유동의 열전달 2차원 상관관계식 (2 Dimensional Correlations of Heat Transfer of Oil Flows over Offset Strip Fins)

  • 강덕종;신성학;정형호
    • 설비공학논문집
    • /
    • 제14권9호
    • /
    • pp.734-740
    • /
    • 2002
  • In the present study, heat transfer characteristics of oil flow over offset strip fins are predicted by the numerical methods. Oil flow in the plate-fin passage is idealized by 2 dimensions. Inlet velocity, Prandtl number and fin pitch ratio are chosen as parameters which affect the heat transfer of offset strip fins. The effect of parameters on pressure drops and convective heat transfer coefficients are described. Characteristic length is derived in case of 2 dimensional flow situation. Correlations for friction factor and convective heat transfer coefficient are derived.

원형관-평판휜 형상의 밀집형 열교환기 내 공기 측대류열전달특성에 대한 수치해석 (Numerical Analysis for the Air-Side Convective Heat Transfer Characteristics in a Compact Heat Exchanger with Circular Tubes and Continuous Plate Fins)

  • 모정하;이상호
    • 대한기계학회논문집B
    • /
    • 제31권12호
    • /
    • pp.994-1001
    • /
    • 2007
  • Numerical analysis has been carried out to investigate air-side convective heat transfer characteristics in a compact heat exchanger with circular tubes and continuous plate fins. Simulation results such as air velocity and temperature distributions are presented, and heat transfer coefficients are compared with previous experimental correlations. Three models of standard and RNG $k-{\varepsilon}$, and Reynolds stress are applied for turbulence model applicability. Predicted heat transfer coefficient from the models of standard and RNG $k-{\varepsilon}$ are very close to those of the heat transfer correlations while there are relatively large difference, more than 17 percentage in the result from the Reynolds stress model. From the calculated results a correlation for Colburn j factor in the compact heat exchanger system is suggested.

수평관내 이산화탄소의 증발 열전달 특성 (Evaporative Heat Transfer Characteristics of Carbon Dioxide in a Horizontal Tube)

  • 손창효;이동건;김영률;오후규
    • 설비공학논문집
    • /
    • 제16권12호
    • /
    • pp.1134-1139
    • /
    • 2004
  • The evaporative heat transfer coefficient of $CO_2$ (R-744) in a horizontal tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and evaporator (test section). The test section consists of a smooth, horizontal stainless steel tube of inner diameter of 7.75 mm. The experiments were conducted at mass flux of 200 to 500 kg/m$^2$s, saturation temperature of -5 to 5$^{\circ}C$, and heat flux of 10 to 40kW/m$^2$. The test results showed the heat transfer of $CO_2$ has a greater effect on nucleate boiling more than convective boiling. Mass flux of $CO_2$ does not affect nucleate boiling too much, and the effect of mass flux on evaporative heat transfer of $CO_2$ is much smaller than that of refrigerant R-22 and R-134a. In comparison with test results and existing correlations, correlations failed to predict the evaporative heat transfer coefficient of $CO_2$, therefore, it is necessary to develope reliable and accurate predictions determining the evaporative heat transfer coefficient of $CO_2$ in a horizontal tube.

수평관내의 $CO_2$의 증발 열전달에 관한 연구 (Study on the Evaporation Heat transfer of $CO_2$ in a Horizontal tube)

  • 장승일;최선묵;김대희;오후규
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.240-241
    • /
    • 2005
  • The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and evaporator(test section). The test section was made of a horizontal stainless steel tube with the inner diameter of 4.57 mm, and length of 4 m. The experiments were conducted at mass flux of 200 to 700 kg/$m^2s$, saturation temperature of 0$^{circ}C$ to 20$^{circ}C$, and heat flux of 10 to 30 kW/$m^2$. The test results showed the evaporation heat transfer of $CO_2$ has great effect on more nucleate boiling than convective boiling. The evaporation heat transfer coefficients of $CO_2$ are highly dependent on the vapor quality, heat flux and saturation temperature. In comparison with test results and existing correlations, correlations failed to predict the evaporation heat transfer coefficient of $CO_2$, therefore, it is necessary to develop reliable and accurate predictions determining the evaporation heat transfer coefficient of $CO_2$ in a horizontal tube.

  • PDF

혼합냉매 R-407C의 증발 열전달과 압력강하 (Evaporation Heat Transfer and Pressure Drop of Mixture Refrigerant R-407C)

  • 노건상;오후규;손창효
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권4호
    • /
    • pp.542-549
    • /
    • 2008
  • The evaporation heat transfer coefficient and pressure drop of R-22 and R-407C in a horizontal copper tube were investigated experimentally. The main components of the refrigerant loop are a receiver, a compressor, a mass flow meter, a condenser and a double pipe type evaporator (test section). The test section consists of a smooth copper tube of 6.4 mm inner diameter. The refrigerant mass fluxes were varied from 100 to $300\;kg/m^2s$ and the saturation temperature of evaporator were $5^{\circ}C$. The evaporation heat transfer coefficients of R-22 and R-407C increase with the increase of mass flux and vapor quality. The evaporation heat transfer coefficients of R-22 is about $5.68{\times}46.6%$ higher than that of R-407C. The evaporation pressure drop of R-22 and R-407C increase with the increase of mass flux. The pressure drop of R-22 is similar to that of R-407C. In comparison with test results and existing correlations, correlations failed to predict the evaporation heat transfer coefficient of R-22 and R-407C. therefore, it is necessary to develope reliable and accurate predictions determining the evaporation heat transfer coefficient of R-22 and R-407C in a horizontal tube.

4.57 mm 세관 열교환기 내 이산화탄소의 증발열전달 특성 (Evaporation Heat Transfer Characteristics of Carbon Dioxide in the Inner Diameter Tube of 4.57 mm)

  • 구학근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권2호
    • /
    • pp.145-151
    • /
    • 2007
  • The evaporation heat transfer coefficient of $CO_2$(R-744) in a horizontal tube was investigated experimentally. The main components or the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and evaporator(test section). The test section consists of a smooth, horizontal stainless steel tube of inner diameter of 4.57 mm. The experiments were conducted at mass flux of 200 to $500\;kg/m^2s$, saturation temperature of -5 to $5^{\circ}C$, and heat flux of 10 to $40\;kW/m^2$. The test results showed the heat transfer of $CO_2$ has a greater effect on nucleate boiling more than convective boiling. Mass flux of $CO_2$ does not effect nucleate boiling too much. In comparison with test results and existing correlations, the best fit of the present experimental data is obtained with the correlation of Jung et al. But existing correlations failed to predict the evaporation heat transfer coefficient of $CO_2$, therefore, it is necessary to develope reliable and accurate predictions determining the evaporation heat transfer coefficient of $CO_2$ in a horizontal tube.

Condensation Heat Transfer Correlation for Smooth Tubes in Annular Flow Regime

  • Han Dong-Hyouck;Moon C.;Park C.;Lee Kyu-Jung
    • Journal of Mechanical Science and Technology
    • /
    • 제20권8호
    • /
    • pp.1275-1283
    • /
    • 2006
  • Condensation heat transfer coefficients in a 7.92 mm inside diameter copper smooth tube were obtained experimentally for R22, R134a, and R410A. Working conditions were in the range of $30-40^{\circ}C$ condensation temperature, $95-410 kg/m^2s$ mass flux, and 0.15-0.85 vapor quality. The experimental data were compared with the eight existing correlations for an annular flow regime. Based on the heat-momentum analogy, a condensation heat transfer coefficients correlation for the annular flow regime was developed. The Breber et al. flow regime map was used to discern flow pattern and the Muller-Steinhagen & Heck pressure drop correlation was used for the term of the proposed correlation. The proposed correlation provided the best predicted performance compared to the eight existing correlations and its root mean square deviation was less than 8.7%.