• 제목/요약/키워드: heat transfer correlations

검색결과 365건 처리시간 0.031초

배기열 회수용 종이 열교환기의 성능예측에 관한 연구 (A Study on the Performance Prediction of Paper Heat Exchanger for Exhaust Heat Recovery)

  • 유성연;김진혁
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.294-299
    • /
    • 2005
  • In order to control indoor air quality and save energy. it is needed to install a suitable ventilation system equipped with heat exchanger for heat recovery. Paper heat exchanger can recover $50{\sim}70$ of the enthalpy difference between supply and exhaust air. The purpose of this research is to obtain the experimental correlations for the friction factor, heat transfer coefficient, mass transfer coefficient and permeance of paper heat exchanger, which can be used for the performance prediction of the paper heat exchanger. Pressure drop at various velocities and heat transfer rate at various dry-bulb temperatures, relative humidities, and specific humidities are measured to make experimental correlations. The results of prediction using correlations show fairly good agreement with experimental data.

  • PDF

건조기용 타원관 대구경 핀-관 열교환기의 성능특성 (Performance Characteristic of Large Diameter Oval Finned-Tube Heat Exchanger for Dryer)

  • 배경진;차동안;권오경
    • 동력기계공학회지
    • /
    • 제18권5호
    • /
    • pp.22-27
    • /
    • 2014
  • The objectives of this paper are to obtain an empirical equations regarding the correlations between heat transfer and pressure drop of oval fin-tube heat exchanger having large diameter using wilson plot method. It was difficult to find any recommendable heat transfer and friction factor correlation available for our large diameter experimental cases. Overall heat transfer coefficients are composed of the heat transfer coefficients both inside and outside tubes. The resulting empirical correlations for the Nui and f-factor are given as $Nu_i=0.0146Re^{0.809}Pr^{0.3}$ and $f=4.366Re^{-0.64}$, respectively. The empirical correlations of the Nui and f-factors were developed for the large diameter oval finned-tube heat exchanger as a function of the Reynolds number. As the EG(Ethylene glycol) and air flow rate increases, the heat transfer rate and pressure drop is increased largely.

다채널 편평관의 응축 열전달 및 압력강하특성에 관한 실험 (Experiment on condensation heat transfer and pressure drop characteristics in the multi-channel flat tube)

  • 전창덕;정재원;이진호
    • 설비공학논문집
    • /
    • 제9권3호
    • /
    • pp.376-388
    • /
    • 1997
  • In this study, an experiment was performed to investigate the characteristics of pressure drop and heat transfer of multi-channel tubes for automotive condenser using HFC-134a as an alternative refrigerant. The mass flux and inlet saturation pressure of the refrigerant were controlled, respectively, in the range of 200 to $500kg/m^2s$ and 1.0 to 1.6MPa. Pressure drop and heat transfer coefficient were compared with the previously proposed correlations and new correlations based on Traviss' correlation were suggested. Prediction of pressure drop and heat transfer coefficient based on the new correlations agrees with experimental results within ${\pm}9%$ and -18~+11%, respectively.

  • PDF

PCCS Analysis Model for the Passively Cooled Steel Containment

  • Hwang, Y.D.;Chung, B.D.;Cho, B.H.;Chang, M.H.;Jeong, Ik
    • Nuclear Engineering and Technology
    • /
    • 제30권1호
    • /
    • pp.26-39
    • /
    • 1998
  • The containment pressure and temperature transient analysis computer code CONTEMPT4/MOD5 is modified to incorporate the passive containment cooling models. The correlations are selected from the existing experimental heat transfer correlations to model the natural and mixed convection in annular space between the containment shell and the shield building. The evaporative heat transfer of the water film on the outer shell of the containment is modeled using the correlations derived from the analogy between the heat and mass transfer. The modified code is applied to the Ap600 containment transient analysis for the model verification and the results are compared to the results of GOTHIC calculation done by Westinghouse. Also, d series of parametric sensitivity studies of heat transfer correlations, water film ratio and delay time of the wet cooling on the containment peak pressure and temperature following LOCA are performed for the containment of 1000MWe passive plant, KP1000.

  • PDF

수평관내 이산화탄소의 증발 열전달과 압력강하 (Evaporation Heat Transfer and Pressure Drop of Carbon Dioxide In a Horizontal Tube)

  • 손창효
    • 한국수소및신에너지학회논문집
    • /
    • 제18권2호
    • /
    • pp.189-196
    • /
    • 2007
  • The evaporation heat transfer coefficient and pressure drop of $CO_2$(R-744) in a horizontal tube was investigated experimentally. The main components of the experimental apparatus are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and an evaporator(test section). The test section consists of a horizontal stainless steel tube of 4.57 mm inner diameter. The experiments were conducted at mass flux of $200{\sim}1000\;kg/m^2s$ saturation temperature of $0{\sim}20^{\circ}C$, and heat flux of $10{\sim}40\;kW/m^2$. The test results showed that the heat transfer coefficient of $CO_2$ has a greater effect on nucleate boiling more than convective boiling. Mass flux of $CO_2$ does not affect nucleate boiling too much. In comparison with test data and existing correlations, All of the existing correlations for the heat transfer coefficient underestimated the experimental data. However lung et al.'s correlation showed a good agreement with the experimental data. The evaporation pressure drop of $CO_2$ increases with increasing mass flux and decreasing saturation temperature. When comparison between the experimental pressure drop and existing correlations. Existing correlations failed to predict the evaporation pressure drop of $CO_2$.

소구경 원관내의 R-22 응축열전달에 대한 실험 (Experiments on R-22 condensation heat transfer in small diameter tubes)

  • 김내현;조진표;김정오;김만회;윤재호
    • 설비공학논문집
    • /
    • 제10권3호
    • /
    • pp.271-281
    • /
    • 1998
  • In this study, condensation heat transfer experiments were conducted with two small diameter(ø7.5, ø4.0) tubes. Comparison with existing in-tube condensation heat transfer correlations indicated that the correlations overpredict the present data. For example, Akers correlation overpredicts the data upto 104%. The condensation heat transfer coefficient of the ø4.0 I.D. tube was smaller than that of the ø7.5 I.D tube; at the mass velocity of 300kg/$m^2$s, the difference was 12%. The pressure drop data of the small diameter tubes ware highly(two to six times) overpredicted by the Lockhart-Martinelli correlation. Subcooled forced convection heat transfer test confirmed that Gnielinski's single phase heat transfer correlation predicted the data reasonably well.

  • PDF

수직환형유로에서 상향유동 초임계압 $CO_2$의 열전달 특성 (Heat Transfer Characteristics for an Upward Flowing Supercritical Pressure $CO_2$ in a Vertical Annulus Passage)

  • 강덕지;김신;김환열;배윤영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3395-3400
    • /
    • 2007
  • Heat transfer experiments at a vertical annulus passage were carried out in the SPHINX(Supercritical Pressure Heat Transfer Investigation for NeXt Generation) to investigate the heat transfer behaviors of supercritical $CO_2$. The collected test data are to be used for the reactor core design of the SCWR (SuperCritical Water-cooled Reactor). The mass flux was in the range of 400${\sim}$1200 kg/$m^2$s and the heat flux was chosen up to 150 kW/$m^2$. The selected pressures were 7.75 and 8.12 MPa. The heat transfer data were analyzed and compared with the previous tube test data. The test results showed that the heat transfer characteristics were similar to those of the tube in case of a normal heat transfer mode and degree of heat transfer deterioration became smaller than that in the tube. Comparison of the experimental heat transfer coefficients with the predicted ones by the existing correlations showed that there was not a distinct difference between the correlations.

  • PDF

삽입물에 의한 관내 층류열전달 증진에 관한 실험적 연구 (An Experimental Study on Enhancement of Laminar Flow Heat Transfer in a Circular Pipe with Inserts)

  • 권영철;장근선;정지환
    • 설비공학논문집
    • /
    • 제12권7호
    • /
    • pp.667-673
    • /
    • 2000
  • In order to understand the laminar flow heat transfer enhancement by the swirl flow, the effects of heat transfer in a circular pipe with a twisted tape insert were investigated experimentally. In the present study, the uniform heat flux condition was considered. The laminar heat transfer correlations were developed using the least-square-fit from the surface temperature distribution of an electrically-heated pipe and flow property data. Average Nusselt number correlations with the twisted tape insert were expressed as a function of swirl parameter, Reynolds number and Prandtl number. In the case of the twisted ratio y = 6.05, the mean Nusselt number increased approximately 500% and the friction factor increased approximately 300%, compared to the case of the empty pipe, respectively.

  • PDF

Experimental investigation on heat transfer of nitrogen flowing in a circular tube

  • Chenglong Wang;Yuliang Fang;Wenxi Tian;Guanghui Su;Suizheng Qiu
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.463-471
    • /
    • 2024
  • Average and local convective heat transfer coefficients of nitrogen are measured experimentally in an electrically heated circular tube for a range of Reynolds number from 1.08 × 104 to 3.60 × 104, and wall-to-bulk temperature ratio from 1.01 to 1.77. The exit Mach number is up to 0.17, and the heat flux is up to 46 kW·m-2. The molybdenum test section has a 62 diameters heated section with an inside diameter of 5 mm and a 30 diameters entrance section to ensure the fully-developed flow. Uncertainty of Nusselt number is less than 1.6 % in this study. The results indicate that the average heat transfer correlations evaluated by both the bulk and the modified film Reynolds numbers agree well with the experimental data. The local heat transfer results based on bulk properties are compared with previous empirical correlations. New prediction correlations are recommended which are significantly affected by the property variation and heated length. The comparison between the proposed correlations and experimental points shows that 88 % of experimental data fall into an error of 10 %, and almost all data are within an error of 20 %.

Experimental Investigation of R-22 Condensation in Tubes with Small Inner Diameter

  • Kim, Nae-Hyun;Cho, Jin-Pyo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제7권
    • /
    • pp.45-54
    • /
    • 1999
  • In this study, condensation heat transfer experiments were conducted in two small diameter (ø17.5, ø4.0) tubes. Comparison with the existing in-tube condensation heat transfer correlations indicated that these correlations over predict the present data. For example, Akers correlation over predicted the data up to 104 %. The condensation heat transfer coefficient of the ø4.0 I.D. tube was smaller than that of the ø7.5 I.D tube; at the mass velocity of 300 kg/$m^2$s, the difference was 12 %. The pressure drop data of the small diameter tubes were highly (two to six times) over predicted by the Lockhart-Martinelli correlation. Sub-cooled forced convection heat transfer test confirmed that Gnielinski's single phase heat transfer correlation predicted the data reasonably well.

  • PDF